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PREFACE

This book has been written on the basis of a combined experience of more than thirty
years of teaching about and working with electronic circuits of the type used in
present-day communications and control systems. In this book we deal neither with
semiconductor or vacuum tube manufacture nor with overall system design, but with
the understanding and use of devices and configurations of devices that bridge the
gap between these two disciplines. Although we do not deal particularly with the
problems of integrated circuits, many of our results are indeed directly applicable to
circuits in integrated form.

Chapter 1 offers a preview of things to come. Chapters 2 and 3 may be considered
as a review of linear system concepts. Although the material stressed in these chapters
ought to be presented in linear systems courses or textbooks, it has been our experi-
ence that the viewpoints that we find useful are often somewhat slighted there.

Chapters 4 and 5 provide the foundation for the rest of the book. Essentially they
provide a reasonably rigorous but (we hope) intelligible account of both the small-
signal and large-signal operation of both the single devices and the basic multiple
device configurations that serve as the building blocks for all later circuits. These
devices and configurations include the bipolar and field effect transistor, the differ-
ential pair, and the combination of resistance and reactance with these devices.

The approach taken allows one to make both large-signal and small-signal cal-
culations without any ambiguity as to the resultant distortions or nonlinear by-
products. While we did not invent all the results here, we have been using them and
teaching them for some years. To our knowledge this is the first time that they have
been coordinated and made available in one place.

Chapter 6 uses the vehicle of the sinusoidal oscillator to tie together all of the
previous material. The techniques presented allow one to calculate the actual ampli-
tude frequency and distortion of real oscillators rather than just to catalog a number
of circuits. The squegging phenomenon in oscillators is treated in a unique and readily
usable manner.

Chapter 7 considers the deliberate use of the device non-linearity to produce
mixers and frequency converters. It explores the amplitude limitations upon “linear”
mixing and the effect of deliberate or accidental series resistance upon the mixing
process. This chapter also examines the feedthrough and the feedback problems
involved in small signal RF amplifiers and AGC systems.

Chapter 8 is concerned with multipliers and amplitude modulators. It presents a
step-by-step analysis of the popular Gilbert integrated four-quadrant multiplier as

vii



viii PREFACE

well as a number of other useful circuits. Chapter 9 discusses all types of power
amplifiers from linear broadband Class A types through both tuned and broadband
Class D types. Chapter 10 explores the amplitude demodulation problem in detail.
It presents useful design results for the common narrowband peak envelope detector,
which is usually used in circuits but rarely discussed in textbooks. Chapters 11 and
12 present a large amount of new material in their complete coverage of FM generation
and detection.

Because the general principles of the first five chapters are applicable in some form
to most of the circuits in the rest of the book, a unity is achieved that has often not
been apparent in past books in this field. Thus instead of considering a seemingly
endless variety of apparently different oscillators or detectors, one is able to group
circuits into rather broad classes and show straightforward design or analysis pro-
cedures applicable to all of them.

Some of the early versions of this material were originally put into note form in
1962. All of it, except our last-minute revisions, has been used in various graduate
and senior year courses at the Polytechnic Institute of Brooklyn. It is not reasonable
to try to cover all this material in a one-semester course. Well-grounded students
who can handle Chapters 2 and 3 by themselves, and who can absorb Chapters 4
and 5 in say three weeks, should be able to cover selected material from the remaining
chapters without undue difficulty in a semester. A number of selections of coherent
groups of material are possible. Most instructors should have no problem picking
out a set that is both interesting to them and instructive to their students.

Homework problems are included at the end of each chapter. Illustrative-examples
are worked out in most chapters.

Our former colleagues and students at the Polytechnic Institute of Brooklyn
deserve our thanks for their many stimulating criticisms and observations. Professors
Gerald Weiss, Ronald Juels, and Marvin Panzer were particularly helpful in'pointing
out errors or areas in need of clarification. A special debt of gratitude is due to the
various people who struggled with the typing and the drawings for the manuscript
and the various sets of notes that preceded it.

As Department Head through much of the period that the book was in preparation,
Professor Edward J. Smith and the rest of the administration of the Polytechnic
were most kind in extending the use of various typing and reproduction facilities.

While book writing is never really a pleasure, it is exciting to find a simple way to
solve a heretofore difficult problem. We have had many such exciting moments in
preparing this book and we hope that the reader will be able to share some of our
excitement as he uses it.

New York K. K. C.
May 1971 D. T. H.
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CHAPTER 1

PREVIEW

The purpose of this chapter is not to reduce the excitement of the book by “‘revealing
the plot.”” We wish rather, by using one particular circuit as a vehicle, both to indicate
a number of the techniques that we will explore later in detail and to demonstrate to
the reader the power of these methods. We will show how we may rather easily get a
clear insight into the design of such apparently diverse circuits as wideband small-
signal amplifiers, large-signal narrowband amplifiers, frequency multipliers, active
limiters, active mixers, and tuned-circuit sine-wave oscillators. By doing so, we hope
to provide a framework for the general developments that follow and to share with
others the enthusiasm that comes from being able to solve many heretofore difficult
design and analysis problems.

In this chapter, because of its nature, we cannot develop all results or answer
all questions. We trust that the unanswered questions will receive adequate treatment
at a later point.

1.1 BASIC CIRCUIT BIASING

The circuit that we shall use as a skeleton upon which to construct our various
examples is shown in Fig. 1.1-1.

This circuit is shown in the manner in which it might be constructed in integrated
form. The sole purpose of the lower two transistors is to provide a constant current

Fig. 1.1-1 Basic junction
transistor amplifier.




2 PREVIEW 1.1

bias source for transistor 1. (Transistor 3 might be viewed as a diode; however, in
integrated circuits diodes are normally constructed as transistors.)

Our key assumption is that the emitter current and the base-emitter voltage of
the transistors are related by Eq. (1.1-1)}:

ip = I ge"»PdkT (1.1-1a)
KT i
Dgg = — n;—"', (11-1b)
q ES

where k = 1.38 x 107 2*J/°K is Boltzmann’s constant, ¢ = 1.6 x 10~ '° C is the
electronic charge, and I is the emitter saturation current.

Let us make a further set of assumptions: that i, = i, and ig = (1 — a)ig, and
that « is both close to unity and independent of i;. (The assumption of a constant
alpha is rarely true if iy varies over a wide range; however, if alpha approaches
unity, then this variation is normally a second-order effect.)

Since Igs is of the order of 2 x 107 '® A for small silicon integrated circuit
transistors and since kT/q ~ 26 mV at normal room temperatures (T = 300°K),
Eq. (1.1-1b) may be employed to determine the required values of vgg (or Vg for the
case of a bias voltage) to produce various values of iy (or I;). Several values of Vae
vs. I are presented in Table 1.1-1. It is apparent that Vgg varies only slightly for
large variations in I; hence in many applications Vg may be approximated by a
constant of approximately 3 V.

Table 1.1-1 Value of Vg required for
various values of I

Vgg, mV Ig, mA
700 0.1
760 1
820 10
880 100

As connected in Fig. 1.1-1, transistors 2 and 3 must have the same value for
vgg (or Vpg). If they occupy the same area and are on the same chip, they will have
almost identical values for I ;5. Therefore, i, = i, or, for biasing purposes, I, = I 5.
Now Ig, = (Vgg — Vag)/Rg. If Vg is approximated by 3/4 V (so long as Vg > Vg,
_ this is reasonable), then I, 1s known. However, Ix, = I3 + (1 — a)l, or

;5 = Vee =075 Ve — 075
27 2 - o)R, Ry,

(1.1-2)

t A somewhat more accurate representation would be
iE = IES eqwmz/k?"

where 3 < y < 1 depending on the transistor material, i.e., germanium or silicon. In any situation
which warrants it y may be included without affecting any of the derived results.



1.1 BASIC CIRCUIT BIASING 3

and thus
VEE - 0-75
Ry,

So long as Z; contains a series capacitor (no dc path), then I, = I, and the
upper transistor is biased at a constant current level.

(1.1-3)

[CZ =a152 x

1.2 WIDEBAND AMPLIFIER LIMITS ON “SMALL-SIGNAL” OPERATION

Let us first consider the case where Z, is aresistor R, Z is a capacitor Ce,v;, =V,
cos wt, 1/wCg approaches an ac short circuit, and o is low enough so that transistor
reactances may be ignored. We assume that Vec and Vi, are large enough so that the
collector-base junctions of both transistors 1 and 2 always stay reverse biased.

Since Cy is an ac short circuit, v, appears directly across the emitter-base junction
of transistor 1. In addition, any dc voltage Va. which is developed across C, appears
across the junction; hence vgy, = v, + Vac- When v; is zero, i, is forced to be equal
to I, ; hence

(The subscript Q denotes the quiescent value of a parameter.)
For the case where v; is not equal to zero, Eq. (1.1-1a) may be employed to obtain

iE — IEs[eVdcq/kT]e(V1q{k’1‘)coswl

= IEs[eVdcq/kT]excoswt’ (12_1)

where x = V,q/kT to normalize the drive voltage. Now from a known Fourier series
expansion,

e = Io(x) + 23 I,(x) cos no, (1.22)
1

where 1,(x) is a modified Bessel function of the first kind, of order n and argument x.
(Properties of these tabulated functions as well as further references concerning them
will be found in the Appendix at the back of the book.) The modified Bessel functions
are all monotonic and positive for x > 0and n > 0;15(0) is unity, whereas all higher-
order functions start at zero. As x — 0,

(x/2)

I(x) - =

>

. when n is a positive integer.
Combining Egs. (1.2-1) and ( 1.2-2), we abtain

ey |
ip = IEseVdc"/"TIO(x)I:I + 2 ﬁcos nwt]. (1.2-3)
1 1o(x)
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It is apparent from Eq. (1.2-3) that the average (or dc) value of i is given by
ig = Igge” 49 1 o(x) (1.2-4)

However, the biasing circuitry demands that ip = I, ; hence iy may be written in
the simplified form

. & 1,(x) ]

ip=1Icy|1 + 2) ~———cos nwt 1.2-5
E Cc2 |: Z] IQ(X) ( )

In addition, ¥, may be obtained from Eq. (1.2-4) to be of the form

kT I, kT I, kT

—1In = In==£ — —InIy(x)
g Iglo® q Igs a  °

Vdc =

= Vieg — %71 In Io(x). (1.2-6)

Table 1.2-1 presents several sets of data concerning the modified Bessel functions
that will be of interest to us. From the first column of this table we see that if ¥ =
260 mV, so that x = 10, then the dc voltage shifts by 206 mV from its Q-point value.
We can also see from the other columns that the peak value of the fundamental
component of the collector current of transistor 1 is 1.91.,, while the percentage
second-harmonic distortion in this current is 85 %.

Table 1.2-1

2,(x) 1,(x)

x n Lo(x) Tol) )

0 0.000 0.000 0.000

0.5 0.062 0.485 0.124

1 0.236 0.893 0.240

2 0.823 1.396 0.433

5 3.30 1.787 0.719

10 7.93 1.897 0.854

20 17.6 1.949 0.926

Apparently a 260 mV peak sinusoidal signal is not a small signal at all from the
viewpoint of this amplifier. The limits of small-signal operation are made clearer by
a study of Figs. 1.2-1 and 1.2-2. Figure 1.2-1 shows that the output fundamental is
only roughly linearly proportional to the input voltage, or equivalently x, for
x < 1. However, to keep I(x)/I(x), which is the percent second-harmonic distortion,
below .025 (21 % distortion), it is necessary to keep x below 0.1.1 Consequently, for
small-signal operation V; < 2.6 mV or equivalently [v,] < 2.6 mV.

It is apparent from Eq. (1.2-1) that the emitter current and, in turn, the collector
current of transistor 1 are proportional to e*°*“/e* for any fixed value of x. (We

+ For small values of x, I,(x)/I,(x) = x/4 [cf. Eq. (A-2) in the Appendix at the back of the book].
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20r
1.6}
1.2t 21y (x)/1y (x)
0.8+
I (x)/1 {x)
04
' I3 (x)/1 (x)

L J

0 1 2 3 4 5
x=W q/kT

Fig. 1.2-1 Functions of modified Bessel functions vs. the normalized parameter x.

L 1
—180° - 120° —60°

W~
Fig. 1.2-2 Normalized collector currents vs. angle for exponential junction driven by sine wave.

incorporate the e* term in the denominator for normalization purposes only.)
Consequently, the plot of €*°**“'/e* shown in Fig. 1.2-2 yields a normalized picture
of the collector current as a function of time over one cycle of the input voltage
vy = Vi cos wt. Clearly by the time x = 10, the collector current is flowing in narrow
pulses approximately  cycle wide ; hence the operation of the amplifier is certainly
not linear. In fact, as x increases above one, the overall current waveshape rapidly
ceases to be cosinusoidal. For larger values of x the dc bias shift effectively aids the
signal in holding the base-emitter junction off for a good portion of the cycle.
With |v| < 2.6 mV the output voltage of the amplifier takes the form
21,(x)

———¢os wt. (1.2-7)

vo(t) = Voo — iRy = Voe — al Ry — “IczRLI =)
o
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For small values of x, however, 21 ,(x)/I4(x) ~ x = V,4/kT ; consequently,
0,(t) = Vee — adcaRy — gmeRLV) cos wt, (1.2-8)

where g,.o = alc,q/kT is defined as the transconductance of the transistor. Note
that the value of g,, is exactly that value which would be obtained as the incremental
ratio of collector current to base-emitter voltage evaluated about the Q-point; that
1S,

dic |

Ovgg

di
= a———E

Ovgg

_oqley
= kT B

(1.2-9)

ic=alc2 ig=Ic2

where iy = Iz5"®=¥*T. Thus for |v] < 2.6 mV, classical small-signal analyses may
be employed.

As we shall see in a later chapter, one way to extend the broadband linear signal
handling capacity of a transistor amplifier is to include an unbypassed emitter
resistor. In the circuit under discussion this resistor Rg would be placed in series with
Cp. Such a resistor reduces the fundamental gain of the stage by a factor of

1 1
1 + Relc2q/kT) 1+ gnoRE’

where g, is the small-signal Q-point transconductance with R shorted.

The effect of this series resistance is to linearize the characteristic so that, while
it does reduce the fundamental gain, it reduces the harmonic distortion even more
rapidly. i

As a practical matter one should note that all of the foregoing discussion would
be unchanged if the v; generator were included in series with C while the base of
transistor 1 was grounded.

1.3 NARROWBAND AMPLIFIERS AND LIMITERS

A different approach to utilizing the circuit of Fig. 1.1-1 would be to again let Z be
a single capacitor Cy and let Z be a parallel RLC circuit tuned to the frequency @

o+
v() Or=0,R.C

_T_—- w=+VI1/LC=0

w,=resonant frequency
v (N=V; cos »*

Fig. 1.3-1 Circuit of Fig. 1.1-1
with Z} replaced by a tuned
circuit/

C; (short circuit
| at (1)0)
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of the input signal as shown in Fig. 1.3-1. Fora parallel RLC circuit, the magnitude
of the impedance at the fundamental frequency, Z,(ji), is, in general, greater than
the magnitude of the impedance at the nth harmonic, |Z,(jnw)|; in particular,

Zjno) _ n
1Z(jo)  (n* - 1)Q,’

where Q7 is the Q of the resonant circuit. Therefore, if Qr is sufficiently high, we can
obtain almost a pure sine-wave output voltage v,(1) in spite of large harmonic
components in the collector current of transistor 1.

For example, if x = 5, then Q, = 48 reduces the second-harmonic output
voltage component to 1%, of the fundamental and the third-harmonic voltage com-
ponent to 0.31 % (the collector current has distortion comporents of 72 9 and 40
respectively). Therefore, as a good approximation, the output voltage v,(r) may be
written as

(1.3-1)

21,(x)
1o(x)
where R, = Z,(jw) is the impedance of the parallel RLC circuit at resonance. Since

the impedance of the resonant circuit to dc is zero, no dc voltage is built up across Z, .
In this case, instead of the small-signal transconductance 8mg> 1t is convenient

to define a large-signal average transconductance G,, which is equal to the ratio of
the fundamental collector current Icyy to the fundamental driving voltage V :
Ieyy alcy 214(x) 214(x)
Gn=0G,x)=—- =22 = .
e A A Eme 1o (x)
With this definition for G,,(x), v,(t) may be written in the equivalent form
vo(t) = Vee — G(x)R,V; cos wt, (1.3-4)

tt) = Vee — al5R, cos wt, (1.3-2)

(1.3-3)

which is similar in form to the output of the small-signal amplifier. The basic differ-
ence is that G,(x) is a function of ¥, (or x) and no longer a constant.

Figure 4.5-6 presents values for G(x)/gmg for various values of x. From Fig.
4.5-6 we sce that G,, is down 1 dB from its x — 0 value when x — 1; hence, though
the harmonic distortion has been removed, the amplifier can operate only in an
approximately “linear”” fashion with input amplitudes below 26 mV peak. By
linear, in this case, we mean that there is a constant ratio between input and output
signal levels, and that this ratio is independent of signal level; this is necessary if an
AM wave is to be amplified. If we wish to handle larger input signals in a linear
manner, then the unbypassed emitter resistor again provides the means.

If, on the other hand, we want to remove amplitude variations in V; from the
output, ie., if we wish to produce a “limiter,” then we need only increase x. From
Table 1.2-1 or from Fig. 1.2-1 we note that as x increases, 21 ,(x)/I,(x) approaches a
saturation value of 2; hence v,(t) given by Eq. (1.3-2) reduces to

Uo(t) = VCC - azlczRL COos wt, (1.3_“5)

which is clearly independent of variations in V.
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As an example, we consider the' case where V; varies between A30mV and
520 mV (x varies between 5 and 20) because of a spurious amplitude modulation. If
we define the modulation index as

max

m= Vl — Vlmln
Vl max + Vlmin’

then the input modulation index is m = 0.6 (or 60 %). Since for x = 5,21 (x)/1o(x) =
1.787, and for x = 20, 2I,(x)/Io(x) = 1.949, and since the amplitude of the ac com-
ponent of v,(t) is proportional to 2I,(x)/Io(x) [cf. Eq. (1.3-2)], the output modulation
index is

1949 — 1.787

M= om0 1787 " 0.0435 (or 4.35%).

A further stage driven with this signal at a normalized level such that x > 10 could
reduce the output modulation below 0.05 9.

1.4 FREQUENCY MULTIPLIERS

As we saw in Figs. 1.2-1 and 1.2-2, as x increases, the harmonic component of the
collector current increases. Fori x = 10, I,(x)/I(x) = 0.85, I(x)/I,(x) = 0.66,
1(x)/I(x) = 0.46, and Is(x)/I,(x) = 0.29. Therefore if we tune the output-tuned
circuit to a harmonic of the input, we can obtain an appreciable voltage at least up
to the fifth harmonic for an input drive of 260 mV (x = 10). (For x = 20, Is(x)/I,(x)
has increased to 0.54.) Such circuits are known as frequency muiltipliers. They are
widely used to obtain a higher frequency from a stable crystal oscillator or, in FM
systems, to increase the output FM deviation. Specifically, if the parallel RLC
circuit is tuned to the nth harmonic of the input, v,(t) is given by

21,(x)
0(t) = Vec — al Ry ~—— cos nowt. (1.4-1)
( ) cC Cc2 LIo(X)

1.5 MIXERS

So far we have driven the junction of transistor 1 with a single-frequency cosinusoid.
Let us now consider the case where v(t) = V; cos w,t + g(t) cos w,t. The signal at
frequency w, may be thought of as a local oscillator signal in a superheterodyne
receiver ; g(t) cos w,t may be thought of as a low-level received amplitude-modulated
(AM) signal which we wish to translate to the intermediate frequency (IF) of the
receiver. If we again note that for transistor 1 in Fig. 1.1-1 (with Zz = Cg) the base-
emitter voltage is given by vgz = v; + V., then we may write the emitter current in
the form

iE = IESeVdcq/kTex cos wlte[qg(t)/k’l‘] coswat ( 1.5-1 )

If we assume |g(t) < 2.6 mV, then elae®/*TIces@2t may be approximated by
1 + [gg(t)/kT]cos w,t. In addition, if we replace e*cs@ by its Fourier series, Eq.
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(1.5-1) simplifies to

1
ip = IESeV“"/"TIO(x)[l + —ZI—OL(%) cos w,t + ?I%((x—?cos 2w,t + ]
(t
X [1 + %—)cos wzt]. (1.5-2)

Finally, by noting that cos 4 cos B = 3[cos (4 — B) + cos (A4 + B)], we may rewrite
ig in the form

_— 214(x) 21,(x) qlc;
IE_ICZ[I +I—O(§cosw,t+mcoswzt+ +g(t)ﬁ:
1(x) I1;(x) ]
X 1 QoS Wyt + ——cos(wy — w t + CoS{w, + wy)t + ---1.
[eosont + 2805 0~ ok + 2 s, 4

(1.5-3)

Hence we have generated AM waves with envelopes proportional to the input
envelope g(t) at frequencies w; — w,, w, + W3, 201 — w,, 20, + w,, etc.

If we now choose Z, as a parallel RLC circuit tuned at w; — w, with a value

of Q; sufficient to remove other frequency components from the output [but not so

large that the envelope information of g(1) is filtered], then the output takes the form

aglc, 14(x)
kT I,(x)

= Vec — 8R.g(t) cos (w, — Wy,

olt) = Ve — Ry, g(t) cos (w; — wy)t

where

- agqlcy 1,(x) I(x)

KT Iyx) (%)

Clearly the input AM wave has been translated in frequency from w, to w, — w,.
By choosing the oscillator frequency w, correctly we can shift (or mix) the input
AM wave to any desired intermediate frequency.

The quantity g., which may be interpreted as the ratio of the envelope of the
collector current at the frequency @; — o, to the envelope of the input voltage at
frequency w,, is called the conversion transconductance. Since I,(x)/I,(x) increases
monotonically toward an asymptote of unity for large values of x (or equivalently
V1), it is apparent that g, is optimized by choosing V, greater than 260 mV (x > 10).
For this case g, ~ 8mg and the mixer not only translates in frequency but also
amplifies.

As an example of this fact we consider the case in which g(f) = (1 mV)
(I + cos wyt) cos w,t (Where w,, < w,), R, =10kQ, I, =2.6mA, V, = 260mV,
a ~ 1,and Z, is a parallel RLC circuit tuned at W, — ,. Clearly then for this circuit
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g. = (0.1)(0.948) mho = 0.0948 mho. Consequently, the output voltage is
U,(t) = Vee — (0.948 V)(1 + cos w,t) cos (w; — w))t.

The output signal is shifted in‘frequency and amplified by a factor of almost 1000.
It is interesting that mixers of this form are employed in all superheterodyne
receivers, that is, in more than 99 %, of the world’s receivers of any kind.

1.6 SINE-WAVE OSCILLATORS

To operate the mixer we required a local oscillator; hence every superheterodyne
receiver requires an oscillator. At the same time every transmitter also requires an
oscillator. The first-order characteristics of an oscillator are its waveshape, its fre-
quency, and its amplitude. Second-order characteristics are the frequency and ampli-
tude stability with changes in time, temperature, voltage, and physical movement.

To set the frequency of a sine-wave oscillator we connect it into a feedback loop
so that positive feedback of exactly-360° is possible only at the desired frequency.
To build frequency stability into it we concentrate most of the phase shift vs. fre-
quency dependence into one portion of the circuit (often a quartz crystal or a high-Q
tuned circuit). The oscillator often attains its desired amplitude by reaching a balance
between the feedback allowed by the passive portions of the circuit and the nonlinear
gain offered by the active portion of the circuit (the transistor in the case we are about
to consider).

Figure 1.6-1 shows a sine-wave oscillator circuit constructed from the basic
circuit of Fig. 1.1-1. For this circuit a 360° phase shift around the loop is possible
only in the vicinity of the tuned circuit resonant frequency w, ; hence, if an oscillation
occurs, it has a frequency of approximately w,. Let us now assume that the resonant
circuit has a high Qr; then, if the circuit oscillates, the voltage across it is almost

R,  v,=V coswgyt

Ve

wo=|/\/ll”—

—Ve C=C,C,/[C+C))
Fig. 1.6-1 Sine-wave oscillator.
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sinusoidal even if the collector current flows in narrow pulses. If we assume also that
this voltage, v, = V,coswyt, is stepped down by the capacitance ratio n =
Ci/(Cy + C,) (cf. Chapter 2), then a sinusoidal drive voltage of the form ¥V} cos wot
appears at the emitter of transistor 1, where ¥, = n¥,. This emitter voltage, in general,
causes a nonlinear, pulselike collector current.

We demonstrate in Section 5.5 that the loading of the transistor emitter junction
upon C, is equivalent to a resistance of a/G,(x). In addition, we demonstrate that
this loading may be reflected across the inductor L as a conductance of n*[G,(x)/a],
where n is again C,/(C, + C,). Consequently, the total effective conductance
appearing across the inductor is

2

Gr =G, + ==Y Gnl)

o

According to the Barkhausen criterion, for a sustained sinusoidal oscillation at
wo, A (jwe) = 1, where A,(jw) is the loop gain. To evaluate the loop gain we break
the loop at the emitter, apply a signal of the form ¥, cos w,t to the emitter, terminate
the broken loop in a resistance of «/G,,(x), and determine the signal across the ter-
mination of the loop. The broken loop is shown in Fig. 1.6-2. The capacitor Cg,
which has no effect on the calculation of A4,(jw,) since it is an ac short circuit, is
incorporated to preserve the dc bias conditions.

Now, with the loop broken, the oscillator reduces to a narrowband amplifier
for which we may write

_ V1G,(x) cos myt (1.6-1)

r = 2G .
G, +" m(X)

R, v, =¥, cos ngl

Vi

Fig. 1.6-2 Circuit for determining loop gain.
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Since the two capacitors act as a step-down transformer with ratio n,

. nViG,(x)cos wyt
=

: 1.6-2) -
i n2G_(x) (1.6-2)
G, +
and
. v; nG,(x)
A(jwe) = o= —————nz(G ) (1.6-3)
t GL + m
Stable sinusoidal oscillations occur at w, for
nGy(x)  _
> =
G, + n“G,(x)
or equivalently
G,
Gm(X) = m (16‘4)

.Equation (1.6-4) specifies the value of G,(x) required by the passive portion of
the circuit. The amplitude must now adjust itself so that the transistor supplies this
Gx). If I¢, is known, then g,o = I¢,q/kT follows, and from Fig 4.5-6 we may
determine the x that corresponds to the required G,,.

For example, if C, = 100pF, C, =11200pF, and R, = 13.7kQ, then

n = 0.00885 and G (x)~ —Gn—L = 8300 umbho.

If, in addition, I, = 0.5 mA, then
gmo = 19,200 umho and G,(x)/gmg = 0.432;
hence from Fig. 4.5-6,

Vi _ 104mV
n  0.00885

It is quite obvious that V¢ must exceed 12 V if collector-base saturation is not
to occur in transistor 1. So long as V¢ > 12V, the previous amplitude is the ampli-
tude at which the circuit stabilizes. In addition, in this case,

.G,
= Wg=——~ Ry =~ woC Ry = 13.7,

QT 0(:l + C2 T (A S A ‘
which is not nearly as high as we would normally want the Q of an oscillator to be.
However, even in this relatively low-Q case we have only 5% second-harmonic
voltage across the tuned circuit; hence our assumption of a pure sine-wave drive .

x =4, Vi =4 x 26 =104 mV, and V.= =118V.
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was not bad. We shall show later that such a circuit oscillates within two parts in a
thousand of the nominal center frequency of the tuned circuit alone.

1.7 CONCLUSIONS

Now that we have seen some of the possibilities of this simple circuit, we shall go
back and examine both a number of passive circuits and a number of other non-
linearities in detail. Then we shall return to explore in more depth each of the circuits
discussed here, and also to discover many other circuits of immediate interest to the
communication or control system designer. Before we plunge into nonlinear con-
trolled sources and then into circuits, we devote a chapter to passive transformerlike
networks and a chapter to the response of narrowband filters to modulated signals.
There are no review chapters on basic electronics, for instance, on biasing small-
signal amplifiers. For readers who feel deficient in such areas, some suggested back-
ground reading is listed below.

SUGGESTED BACKGROUND READING IN ELECTRONICS

Angelo, E. J,, Jr,, Electronics: FET’s, BJT's and M icrocircuits, McGraw-Hill, New York (1969).
Gray, P. E., Introduction to Electronics, John Wiley, New York (1967). A 325-page paperback
developed for an introductory course in electronics. About half of the book is devoted to physics,
diodes, and diode circuits, one-third to junction transistors, and one-sixth to field effect tran-
sistors and vacuum tubes.

PROBLEMS

Problems 1.1 through 1.5 are all based on the circuit of Fig. 1.1-1.

1.1 Supposing that [V = 3V, Rz = 3kQ, all alphas = 0.98 and all transistors are identical,
silicon, and have Iz5 = 2 x 107 ¢ A, find I, . If Vee = +10V, then determine the value of
R, that can be used to replace Z, so that the output dc voltage level will be +5 V. What is
the approximate power dissipation in each transistor for this case?

1.2 Suppose Zy is replaced by an ac short circuit in the circuit of Problem 1.1. Sketch v, for the
' cases where v; is a pure sine wave having peak amplitudes of 1 mV, 2.6 mV, 26 mV, and
260 mV. (In Section 5.3 this case is considered in detail; only a reasonable estimate of the

output is required at thjs point.)

1.3 Suppose Zj is replaced by a 100 Q resistor in series with an ac short circuit. Repeat Problem
1.2 for the cases in which v; has a peak amplitude of 1 mV and of 260 mV. Compare the
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PREVIEW
i 0V
5 2000
% +
()
2kQ Q, _l_
= 1 uF
L
W
q +
2, 0, Cw v()

—10V

|||I

v(1)=(260 mV) cos 107¢
T=27°C, B=98
Vee=0.7V

Figure 1.P-1

results with the previous problem. (The second case is not trivial ; the solution is covered in
detail in Chapter S.)

Repeat Problem 1.2 for the case where R, is shunted by a parallel LC combination tuned to
the resonant frequency of the input sinusoidal signal. Does saturation occur?

Repeat Problem 1.2 for the case where R, is shunted by a parallel LC combination tuned to
the second harmonic of the input sinusoidal signal and compare the results with those of
Problem 1.4.

For the circuit shown in Fig. 1.P-1, determine an expression for v,(t) (Q, and Q; are identical).
For the circuit shown in Fig. 1.P-2, determine the quiescent values of igy, Vgp:, and v,
when Ipg, = 107'3 A, Ip5, =2 x 10713 A, and Ipg; = 1.5 x 1071 A

For the circuit of Fig. 1.P-2, determine v,(t) where v; = (1 mV)cos 10%¢ and Iggy = Igs; =
Ipsy = 10713 A
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? —-10V

3JkQ

Figure 1.P-2



CHAPTER 2

BROADBAND AND NARROWBAND
TRANSFORMERLIKE COUPLING NETWORKS

In this chapter we explore the similarities among a number of passive networks all
of which have widespread practical application. All of these networks have the
property of being able to transform impedance levels and hence voltage and current
levels. Initially we consider a broadband transformer, and in later sections we show
how a number of practical circuits may be reduced to the combination of a parallel
RLC circuit and an ideal transformer. Throughout the chapter, emphasis is placed
on plausible approximations, usually based on a consideration of the pole-zero
diagram for the circuit in question. .

The reader may question the necessity of such a chapter, since he has undoubtedly
already had one or more courses in network theory or linear circuits. We have
included the chapter because it has been our experience that such courses—or the
textbooks used in them—rarely bring out the similarities in the circuits discussed
here or make evident the approximations that suffice to simplify them. It is our aim
in later chapters to combine these circuits with various nonlinear elements to make
useful circuits. Before undertaking this combination it seems wise to have a thorough
familiarity with the individual pieces. ,

The reader eager to get on to complete circuits might examine the equivalences
shown in Table 2.5-1 and the illustrative examples at the end of Section 2.4. If these
are all “old hat,” then we urge him to push on; if not, we recommend this chapter as
a foundation for later work.

2.1 BROADBAND TRANSFORMER COUPLING

In this section we study the frequency and time-domain properties of a linear network
consisting of a resistive load coupled to a driving voltage source by means of a broad-
band transformer as shown in Fig. 2.1-1. Such networks are useful for providing dc
isolation and the possibility of phase inversion between the input and the output;
they are also employed when the load resistor must be scaled in value to “match”
the driver over a broad band of frequencies. For example, a transistor power amplifier
might require a 200 Q resistive load over the frequency range of 20-20,000 Hz in
order to deliver a required amount of power without exceeding its maximum voltage,
current, and power ratings, whereas the speaker it has to drive might have an im-
pedance of 8 Q; hence transformer coupling is required. Transformer coupling is
also employed where the load resistor must “float” referenced to the input voltage
source both for dc and for ac signals.

16
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R’ M~“'—k\/L]L2

Fig. 2.1-1 Transformer vi(h) L-; ng R, §vo 6
coupling network. -

Since our objective in this section is to gain familiarity with the basic operation
of the transformer as a coupling element, we neglect second-order effects such as
winding capacity and core nonlinearities in our analysis. In addition, we model the
resistive losses in the transformer as small resistors in series with the input and output
terminals. This model is quite reasonable where core loss is not excessive in com-
parison with winding loss, as is the case in most commercial broadband transformers.

The transformer model most useful for analyzing broadband coupling networks
is shown in Fig. 2.1-2, where r; and r, represent the transformer loss. The equivalence

r Ty kL

R -1
/-—/\'i__\ l nol I '/[‘2
g A
R, " iLa=(1—k2)Ll o I O
+ | I +
Fig. 2.1-2 Transformer ) %
e repiacing toan G> b (1) } L,=kL, ; | Ré W)
former of Fig. 2.1--1. N ) | I _
I
l |
| Ideal i

of this model, as well as other possible models, and the original transformer is explored
in the appendix and in the problems at the end of the chapter. The model explicitly
indicates the cause of the loss of high- and low-frequency transmission. In particular,
at low frequencies the impedance of L, = k*L, approaches zero and shunts to
ground the signal path to R,; and at high frequencies the impedance of L, =
(I — k*)L, approaches infinity and thus opens the signal path to R,. However, if
L, » L, (or equivalently k ~ 1), a frequency range exists where oL, is large in com-
parison with the impedance it shunts, while wL, is small in comparison with the
impedance in series with it. Over this range, which we call the midband (cf. Fig.
2.1-7), the inductances L, and L, may be approximated by short and open circuits:
this yields the simplified model shown in Fig. 2.1-3 for the network of Fig. 2.1-1.
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kvLy
n=
i VL
: A .
B ARSI I P A
+

Fig. 2.1-3 Midband model +
for transformer coupling ~ () 3 g R, Zv.(0)
network. _ <

Ideal

With the aid of the midband model, we first observe that for the usual case where
r, < R, and r; « R, an impedance of n*R,, is presented to the driving source.
Therefore, by choosing n%. = k?L,/L, appropriately, we may obtain any load resist-
ance required by the driving source. For k ~ 1and L, and L, wound on the same
core,

Wkt M
L, N¥

where N, and N, are the numbers of turns in the windings of L, and L, respectively;
hence in this case n may be related to the physical turns ratio of the transformer.

Second, we observe that in the midband n may be chosen to maximize the voltage
across R, for the case where v{t), R,, and R, are fixed. Situations of this type arise
when a transducer, such as a phonograph pickup, with a high source impedance
(R,) and a fixed developed signal (v;) must be coupled in the midband to an amplifier
with low input resistance (R;). Writing the midband transfer function in the form

H _v"_(t)'_ R,
m= o) r,+ R, +n*(r, + Ry

2.1-1)

and equating dH,/dn with zero, we obtain the value of n which maximizes H,,:

e = JIR+ TR, +12). (2.1-2)
With this value of n = n,,, the midband transfer function is given by
R,
m= (2.1-3)
2. /(R + r)(Ry + 12)

The value of n = n,, given in Eq. (2.1-2) is intuitively reasonable as the value which
produces maximvm signal to R, since it vields » resistance at the trancformer input
terminals which is equal.to the source resistance R, + ry. Such a match ensures
maximum power into the transformer and thus into R,. .

It is apparent from Eq. (2.1-3) that the existence of transformer loss reduces
the signal available to R;. To obtain a better measure of this signal attenuation, we
assume that v(t) is of the form ¥, cos wt, where w is some midband radian frequency,
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ao 0b

— 3t

i 500Q 5Q
Fig. 2.1-4 Typical transformer specification. f1==20 Hz, f,-- 15,000 Hz

and that n = n,,, and then compute the ratio of the average power delivered to R,
to the average power delivered to R, withr; = r, = 0. This ratio, which is a measure
of efficiency 7, is given by

Vi R}
P 2R, 4R, + r ) (R, +1,) R, R
y = L o= . 1 i L 2) _ e (2.1-4)
Pili=ri=0 Vi R; R, +r, R . +r,
2R; 4R.R;

Clearly then, unless r; « R, and r, « R, much of the available signal power is not
supplied to R; .

The transformer manufacturer usually indicates what minimum values of R,
and R ensure R; » r, and R, >» r, in his specification of the turns ratio. Typically,
the specification appears in the form shown in Fig. 2.1-4, which is interpreted to
imply that if a 5 Q resistor is connected across terminals b and b’, 500 Q is “seen”
at terminals a and a' in the midband range extending from 20 Hz to 15,000 Hz;
hence n = (/500/5 = 10. In addition, the fact that R, = 5Q and R, = 500Q
ensures R, » r, and R » r, usually to the extent that n > 0.8. Using smaller
values of R, does not alter the turns ratio n but does decrease the efficiency # and
alter the midband frequency range.

To extend our analysis beyond the range of the midband. we obtain the transfer
function H(p} = V,(p)/V,(p) for the circuit of Fig. 2.1-2 in the form

nR,

L
H(p) = “ , 1-5
(p) R R R RE, (2.1-5)
AL TL L) T L

where R, =R, +r;, R,=n* R, +r,), L,=(1 —k*L,, and L, = k’L,. Since
all RL (or RC) networks have their poles on the negative real axis. the pole-zero
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N Fe
/N N
2

X

Fig. 2.1-§ Pole-zero diagram of H(p).

diagram for H(p) takes the form shown in Fig. 2.1-5, where p, and p, are the roots
of the denominator of H(p). In general, the expression for p, and p, is quite compli-
cated ; however, for the broadband transformer where L, > L,, and in turn p, > p,,
simplified approximate expressions for p, and p, may be obtained.

We note from Eq. (2.1-5) that the sum and product of the roots of the denominator
of H(p) are given by

R.R,

R, +Ry Ry
LaLb.

Pi+pr=— L L,

) and PiP2 =

As L, increases relative to L,, p, + p, approaches a constant value while p,p,
approaches zero. But p,p, can approach zero only if one of the poles, p, in this case,
approaches the origin. Thus as L, increases relatlve to L, the larger pole is approxi-
mated by the sum of the poles; that is,

R,+R, R R, +R
plzpr+pz=*(4La b+L:)~ ”_La—'—bEp“’ 21-9
and
R.R,
L L R_R 1
pyabibr_ Lo RR 1 2.1-7)
plO Ra + Rb Ra+ Rb Lb
L

As the reader can readily demonstrate numerically, if R, ~ R, and L, > 10L,, the
approximations of Eqgs. (2.1-6) and (2.1-7) are accurate within 5. In addition, if
L, > 100L, the approximations are valid within 19 for any ratio of R, to R,. It
should be noted that p, , is the network pole obtained with L, open-circuited and that
P20 1s the network pole obtained with L, replaced by a short circuit. Figure 2.1-6
shows the two simplified single-pole circuits from which p,, and p,, may be obtained
by inspection.
With the poles widely separated, H(p) is given by

nRL nRL

L’ L,

(P—Plo)(P-'on):(p+Ra+Rb)(p+ 1 R.R, );

L, L, R, + R,

p
Hp) =

(2.1-8)
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R, L, R,
—ANMN——— —MA\ °
+ +| -
Vi(')C'\D RA§ v "V L, §Rb
-— _ R,+ R, - — _RnR .
Pro= = PR TR AR

Fig. 2.1-6 Simplified cir- ]
cuits for determining p, o R=n+R, R=nrR +r) L=(0—k)Ly, =k,
and p,,. (a) (b}

in addition,
20 log |H(jw) = 20log H,, + 20 log |w/p,ol

—2010g /1 + (@/p1o)® — 20log /T + (@/P30)% (2.1-9)

where H,, is the midband transfer function. The magnitude 20 log |[H(jw)| and a
sketch of arg H(jw) vs. w are given in Fig. 2.1-7.

Since |p,ol » |P20l, the corrections at each corner to the asymptotes do not
interact ; hence the range of frequencies over which |H(jw)| has not decreased by more
than 3dB from its midband value is just the range between |p,o] and |pol. This
range is conventionally defined as the —3 dB bandwidth of the transformer coupling
network. One should note also that as the poles become widely separated, arg
H(jw) approaches +m/4 at w = |p,o| and —n/4 at w = |pyol.

If the transformer coupling network is now excited by a step of voltage of the
form v{t) = Viu(t), then V(p) = V,/p, V,(p) = V,H(p)/p, and

Vi H(p) _ VinR,

v(ty= %! = (e~ 1palt — g~ Ipalyy(p), (2.1-10)
Lipy — pal
. l
20 log| H (jw)! ll & 20 log H, ‘ | —6dB/octave
6dB/octave NWB =3dT
|
/ [Py 1Bl \w—>

-, |

Fig. 2.1-7 Magnitude and
" phase vs. w for transfor-
mer coupling network.
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Fig 2.1-8 Step response of

transformer coupling network.

where £~ ' is the inverse Laplace transform operator. A plot of v,(t) vs. ¢ is shown
in Fig. 2.1-8. Note that the high-frequency pole at p, contributes to the deterioration
of the leading edge of the output step, while the low-frequency pole at p, contributes
to the decay of the output step to zero. This, of course, is an expected result, since a
transformer does not transmit either the high-frequency components of the step
which contribute to its leading edge or the low-frequency (dc) components which
are required for a nonzero steady-state value.

If one makes the transformer broadband by designing k ~ 1 (for which case
P1 ® p1o and p, X py,), the step response takes the form shown in Fig. 2.1-9. Since
Ips} » Ip,l, the time duration of e~!”'" becomes negligible when compared with
e lpalt; thus the step response takes the approximate form

= K& = Ip20lt = ﬂ ~|p20lt _
v,(t) = L 1_oe u(t) R+ Rbe u(t). (2.1-11)

Note that this is the response obtainable from the simplified circuit of Fig. 2.1-6b.
If the fine structure of the leading edge of the step response is required, an expanded
time scale about the origin must be employed. On such a scale e ~!72I' remains essen-
tially constant at unity ; thus the leading edge of the step response takes the approxi-
mate form

VinR,

0,(t) = ml — e~ IProltyy(y), (2.1-12)
a b

Vvo(t)= z!aikLbe’lpzullu )

_+
Fig. 2.1-9 Step response of *
broadband transformer net-
work.
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v,(1) v,,(t)z:”:RLh(lfeflp”’l')u(t)
VinR,
R R,
Fig. 2.1-10 Expansion of [

leading edge cf Fig. 2.1-9.

which is illustrated in Fig. 2.1-10 and which is exactly the step response obtained
from the simplified circuit of Fig. 2.1-6(a). Consequently, for the case of widely
separated poles, both the step response and the frequency response may be obtained
from simplified single-pole circuits.

As an application of the above analysis, let us specify the parameters of a trans-
former which matches 5Q(R;) to 500 Q(R,) in the midband extending from 50 Hz
to 5000 Hz (|p,| = 3.14 x 10* rad/sec, |p,] = 3.14 x 10% rad/sec). With these values

the poles are widely separated ; hence

L =( k)L, = R, +r, + n* (R, + rz)’
[P+l
(Ry + r)(Ry + "z)"2

[R, + ry + n*(Ry + ra)lipal

Lb = kle =

If the transformer is to have reasonable efficiency, we must have R, » r; and R >» r,.
In addition, for a match, we need n?R,; = R,; therefore,

1000 250
m = 31.8 mH and kle I~ 3‘]71 = 800 mH.
from which we obtain k = 0.962, L, = 832mH,and L, = k*L,/n*> = 800 mH/100 =
8 mH. All of these values are readily obtained in practice.

Before terminating our discussion of broadband transformer networks, let us
consider the effect of loading the transformer in a way different from that specified
by the manufacturer. Clearly if both R, and R, are increased while their ratio remains
constant, the efficiency increases and |p, | and |p,,| increase in direct proportion to
R, or R, (if we assume r; « R, and r, « R;); hence the transformer passband is
shifted up in frequency. If R, and R, are decreased, the opposite effect results. To
determine the effect on |p,o| and |p,,| of varying R, relative to R, we plot

R

Rb a
20log|p ol = ZOIogL—a(l + R_z,

(1 - k)L, ~

and

R 2
20 log|p2ol = 201og i(ﬁT/R)
b a
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Fig. 2.1-11 Plot of 20 log |p, | and 20 log |p,,| vs. R./R,.

vs. R,/R, as shown in Fig, 2.1-11, where R/Lis expressed as a dimensionless quantity
in some convenient system of units. As R, = R, + r is increased relative to R, =
n*(R, + r;), we observe that the high-frequency pole increases without bound while
the low-frequency pole approaches a constant value. Consequently, we should
expect a current source drive (R; = o0) to produce no high-frequency break point
regardless of the value of k. This effect is not observed in practice, however, since an
additional finite break point is produced by the physical winding capacity, which
we have neglected.

As R, is decreased relative to R,, we observe that the high-frequency pole
approaches a constant value while the low-frequency pole approaches zero. In the
limit as R, - 0 we should expect the transformer to pass dc; however, this effect is
also not observed in practice because of the nonzero resistance of the driving source
and the existence of r,. Although the above analysis is performed for a transformer
coupling network, the same results are obtained for any broadband coupling net-
work having a zero at the origin and two poles on the negative real axis. In particular,
a network of the form shown in Fig. 2.1-12, consisting of a coupling capacitor be-
tween the driver and the load with some stray capacity to ground, has a similar step
and frequency response.

R G
M s

vi(t) Gy

L § R,
Stray

!

Fig. 2.1-12 Capacitive coupling network.
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ii(’)(D R C% Lgv,(t)

Fig. 2.2-1 Parallel RLC circuit.

In the sections which follow we shall shift our emphasis from the broadband
application of the transformer to its application in narrowband circuits. We shall
begin by developing the properties of simple narrowband circuits; we shall then

extend these concepts to narrowband transformer-coupled networks.

2.2 PARALLEL RLC CIRCUIT

Before beginning a discussion of narrowband transformer networks, we shall review
some of the properties of simple narrowband resonant circuits, which are essential
building blocks of the more complicated transformer networks. We shall begin by
considering the simple parallel RLC circuit shown in Fig. 2.2-1. If we drive the
circuit with the current i{t) and define v,(t) as the output voltage, the transfer function
(in this case, input impedance) takes the form

1 1
P~ =
Z,(p) = vlp) _ ¢ = < , (22-1)
ey ., p 1 (> — PP —p2)
RC ' LC

where

1 1\ 1
Prz= ~opc * (mc) TLc
The poles, p, and p,, may be real or a complex conjugate pair. We consider these
two cases separately.
For the case where (1/2RC)* = 1/LC (or equivalently R < woL/2 = 1/2w,C,
where @, = 1/,/LC), p, and p, lie on the negative real axis as shown in Fig. 2.2-2.

This pole-zero diagram, which is analogous to the one for the broadband transformer
network of Section 2.1, indicates that for values of R which are small compared with

| jw
1
SF - ¢
VERVEED
P P2 T 7
Fig. 2.2-2 Pole-zero diagram of Z,,(p) with
R < wyL/2.
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) J + +
i;(r) Q) RZ C=v,(1) i1) Ct) R LY v(9)
20—t

\

— NAAL
|

\ 4

Pole: pjo= R;C]' Pole: p

Fig. 2.2-3 Simplified circuits for finding p,, and p,,.

o L/2, the parallel RLC network functions as a broadband network whose midband
frequency range extends from |p,| to |p,].. Physically the midband may be interpreted
as that range of frequencies over which the impedance of both the inductance L and
capacitance C is large, and therefore negligible, compared with R; hence Z,,,, = R.
At low and high frequencies the impedances of L and C respectively approach zerc,
thus shunting ift) to ground.

For wide pole separation the approximate values of p, and p, may be determined
by inspection. In particular, for p, > p,, p, is approximated by the sum of the roots
of the denominator of Z,,(p), and p, is approximated by the product of the roots
divided by the sum of the roots, that is,

1 —-1/LC R

N — = . = = . 2.2-
D1 RC Pio; P2 1/RC L P2o ( 2)

Physically |p,| is the radian frequency at which the impedance of L is equal to R,
and |p,| is the radian frequency at which the impedance of C is equal to R. Alterna-
tively p;o and p;, are the poles of the simplified circuits shown in Fig. 2.2-3. Since
the step and frequency responses of the broadband parallel RLC network in terms
of p, and p, are identical in form with the corresponding responses of the broad-
band transformer, we do not present them here.

For the case where (1/2RC)? < 1/LC or R > w,L/2, the expression for the poles

takes the form
Piz=—a+j/os—a®=—a+jp, (2.2-3)

where w, = 1//LC, « = 1/2RC, and B = /w? — o®. The pole-zero diagram for
this case is shown in Fig. 2.2-4. It is apparent that the distance of the poles from the
origin is given by a® + 2 = w}; hence as « is increased by increasing the loading
on the‘circuit (decreasing R), the poles move into the left half-plane along the semi-
circular trajectory of radius w, until they meet on the real axis for « = w,.
Physically w, is that radian frequency at which the impedances of the inductor
and capacitor are equal in magnitude and opposite in phase, and thus produce an
open circuit when combined in parallel. This frequency, at which the paraliel RLC
circuit appears as a pure resistor R, is called the resonant frequency of the circuit.
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™
Fig. 2.2-4 Pole-zero diagram of Z, {p) with p,=p
R > wyL/2.

To obtain the sinusoidal steady-state frequency response when R > wyL 2. we
express Z,,(jo) as

, Jw/C R
Z(jw) =—5 5 — = 5 = (2.2-4)
wy — 0 + 2jou LT =
Lo
U

where Q@ = wy/22'= WeRC = R/wyl. Equation (2.2-4) provides the means of
obtaining an exact plot of |Z, |( jw)| and arg Z, ( jw) vs. w. On the other hand, a quick
sketch of |[Z,,(jw)| and arg Z,,(jw) may be obtained from the value of Z,,(jw,) and
the asymptotic values of Z,(jw) as w approaches zero and infinity. The asymp-
totic values vs. «» may be obtained by plotting the resistance R. the magnitude of the
capacitive reactance | X(w)| = 1/wC, and the magnitude of the inductive reactance
| X () = wL on the same set of coordinates vs. w as shown in Fig. 2.2-5. Clearly
for w = w, the reactances of the inductor and capacitor cancel each other and yield
{Z1jn) = Rand, of course, arg Z, ,(jo) = 0. As w is decreased below w,, the small
reactance of the inductor rapidly dominates the parallel RLC network, causing
{Z(jw)toapproachwL andarg Z,,(jw)toapproachn/2. Similarly,as w isincreased
above . the small reactance of the capacitor rapidly dominates the parallel RLC
network, causing |Z,,(jow)| to apprQacﬁ 1/wC and arg Z,,(jw) to approach — /2, as
shown in Fig. 2.2-5.

In addition, the two *‘half-power” frequencies w, and w,, at which |Z,,(jo)| =
R,»’\/ﬁ2 and arg Z,,(jw) = +n/4 and — n/4 respectively, may be found by equating
the imaginary term in the denominator of Eq. (2.2-4) to F1 and solving for w:

2 - w} -1, W= w,,
Qp 20 = ! (2.2-5)
WWw, +1, W= w,.
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Fig. 2.2-5 Plot of |Z,,(jw)| and arg|Z,,(jw) vs. .
Direct solution of Eq. (2.2-5) yields the following relationships between w, and w, :
w; — w; =20 and W10, = Wg.

However, since the difference between w, and w, is the —3dB bandwidth (BW)
of the parallel RLC circuit, we have BW = 2a, or equivalently

BW 2 1

wo @ Qr
It is interesting at this point to note the significance of the parameter Q, which
isreferred to as the network ““que.” First of all, as Q increases, the — 3 dB bandwidth
of the network decreases relative to its resonant frequency. Clearly, then, if the
parallel RLC circuit is used to transmit a modulated carrier whose spectrum occupies
a fixed band of frequencies about w,, Q; must not be increased to a point where
the modulation is distorted. Second, increasing Qr increases the ratio of R to w,L =
1/w,oC (note that Q7 = R/woL = RwyC). Hence the parallel RLC network greatly
attenuates frequencies in the vicinity of 2w, (where |Z,,(jw)| = 1/wC) relative to
frequencies in the vicinity of w, (where Z, ,(jw) ~ R). Consequently, if the purpose
of the parallel RLC circuit is to extract the fundamental component of a periodic
waveform, a Qr as high as possible is desired. Third, as Q; increases, the poles of
Z,(p) approach the imaginary axis in the complex p-plane and cause any transients
induced in the network to become more and more oscillatory.
If we wish, we may interpret Q7 in still another way. For the case where i{t) =
1 cos wyt, which results in v,(t) = IR cos wyt = V; cos wyt, we have

(2.2-6)

27 (peak energy stored) 2n(3CV?2)
= = =0 2-
energy dissipated per cycle  (2rn/wo)(V3/2R) @oCR = 0r 22-7)
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Fig. 2.2-6 Phasor diagram

for evaluating Z,,(jw). p,=p

This interpretation of Qy in terms of stored and dissipated energy is useful in deter-
mining the Q of circuits with more than one source of dissipation.

In cases where Q is high, or equivalently where the poles of Z,,(p) are close to
the imaginary axis, a graphical approximation permits us to obtain a greatly simplified
expression for Z,,(jw). If we consider the phasor diagram shown’in Fig. 2.2-6, we
observe that for w > 0 the range of frequencies over which |Z,(jw)| = (SF)p./p,.p,,
is significantly different from zero is that range in the vicinity of p, where p,, becomes
small. As « is decreased relative to w,, this frequency range decreases to the point
where the phasors drawn from z and p, = p} remain essentially constant over the
entire range, with the magnitudes and angles given by

p: R Wy, 0, = n/2, Pp, X 20, 0,, = n/2.

B = Jwi—o*x w,.

Consequently, for high values of Q;, Z(jw) may be clncely approximated by

In addition, for a « wy,

Z(jo) ~ exp j(f - 9[,‘) (2.2-8)

CQabolpy, 2 2

- 28 Y (—Jepl)
Zcppl .
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Recognizing that p, expjb, = a + jw — f) ~ a + jlo — wy), we may rewrite
Eq. (2.2-8) in the form

1 _ R

2aC(l + 2" o

Z,(jw) = w > 0. (2.2-9)

A similar form may be obtained for v < 0.
It is apparent that |Z,,(jw)| given by Eq. (2.2-9) is symmetric about W, With
“half-power” frequencies w, and w, given by

Wy =Wyt o

It is interesting that for high values of Q, w, approaches the arithmetic rather than
the geometric mean of w, and w,, while the — 3 dB bandwidth remains unchanged
at w, — w; = 2a.
For w = w, and for w = w,, p,, has increased from its minimum value of « to
a\/i, thus causing |Z  ;(jw)| to decrease from its maximum value by a factor of 1 /ﬁ.
Although we have indicated that the simplified form of Z,,(jw) given by Eq.
(2.2-9) is a good approximation for Z ,(jw) when' Q; is high, we have not yet deter-
mined what range of Qr may be considered high. To do this we manipulate the exact
expression for Z ,(jw) given by Eq. (2.2-4) into the form

R

Q +4Q;°
2Q + 40,

Z,(jw) =

(2.2-10)
1+jQ

where Q = (0 — wo)/a. Here we see explicitly that as Q; — oo Eq. (2.2-10) reduces
to Eq. (2.2-9). In addition, if we plot |Z,,(jw)|/R and arg Z,,(jw) vs. Q as shown in
Figs. 2.2-7 and 2.2-8, we observe exceptionally close agreement between the curves
obtained for Q7 = 10 and Q; = oo, particularly in the vicinity of Q = 0, or equiva-
lently w = w,. Since the curves for Q; = oo correspond to the simplified expression
for Z,,(jw) given by Eq. (2.2-9), we may clearly use this approximation for Z,(jw)
with confidence for Q; > 10 and as a “ballpark” approximation for Q as low as 5.

To obtain the response of the parallel resonant circuit driven by an impulse of
current, we obtain the inverse Laplace transform of Z,,(p) or directly evaluate the
impulse response by other methods. In either case, we obtain

z,(t) = L7 Z,, ()] = z)—ze_“'cos ([h + tan~! %) u(t). (2.2-11)

For the case where Qr > 10, Eq. (2.2-11) reduces to the simplified form

21 = ée T (cos wet)ult), (2.2-12)

since f = woy/1 — 1/4Q0% ~ wy and a/f = 1/,/40% — 1 ~ 0.
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IZ"(jw)l
R

Fig. 2.2-7 Plot of |Z,(jw)I/R vs. Q = (v — w)/a.

2.3 PARALLEL LC CIRCUIT WITH SERIES LOSS

In this section we shall consider the parallel resonant circuit with loss in series with
the inductor or capacitor. We shall show that when the series loss 1s small, as is most
often the case in communication systems, the circuit behaves in the same fashion as
the parallel RLC network, and thus the loss may be modeled by an equivalent parallel
resistor. Such a model permits the combination of circuit loss appearing at several
points in the parallel LC circuit into a single parallel resistor for which the expressions
derived in Section 2.2 may be applied directly.

We begin our analysis with the circuit of Fig. 2.3-1, in which the loss in the form
of r appears in series with the inductor. We shall then generalize to the case where
loss appears in series with both the inductor and capacitor and also in parallel with
the combination. For the circuit of Fig. 2.3-1, the transfer function (or input im-
pedance) relating v,(t) and i(t) is given by

Vp) _ (1/C)p + r/L)
I = —p)p = p2)

where p, , = (—r/2L) + \/(7/2L)2 — 1/LC. We see that the poles of Z,,(p) may be
either real or complex, depending on the relationship of the parameters. Since the
analysis of the circuit with real poles is quite similar to the real-pole analysis performed
in Section 2.2, we restrict our attention to the case where 1/LC > (r/2L)? (or equiva-

lently r < 2woL = 2/wyC, where w, = 1//LC). For this case the poles may be

written in the form
P12 = —a X ji/ wy —a* = —a tjp, (2.3-2)

Zu(P) =

(2.3-1)
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Fig. 2.2-8 Plot of arg Z,,(jw) Qr=
vs. Q = (0 — we)/a. -90°L

i) (f) C ﬁf v (2)

Fig. 2.3-1 Parallel LC circuit with loss in
series with the inductor.

L
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Fig. 2.3-2 Pole-zero diagram of Z,,(p) for p2=pi*
r < 2wel.
where

a=i, wo=ﬁ, and f=Jw}— %
The corresponding pole-zero diagram for Z, (p) is shown in Fig. 2.3-2. Here again
we notice that as o is increased by increasing r, the poles move into the left half-
plane along a semicircular trajectory of radius w,, where wy is the frequency at which
the magnitudes of the impedances of the inductor and capacitor are equal.

Figure 2.3-3 shows a sketch of |Z,,(jw)| and arg Z,,(jw) obtained graphically
from the pole-zero plot of Fig. 2.3-2. Even this rough sketch indicates that, unlike
the parallel RLC circuit, the circuit with loss in series with the inductor does not
experience either zero phase shift or maximum amplitude of | Z | ;( jw)| at the frequency
wq. For this reason two distinct resonant frequencies are specified for this circuit:
(1) the amplitude resonant frequency at which the maximum value of |Z,(jw)|
occurs and (2) the phase resonant frequency at which Z  ,(jw) appears purely resistive.
Fortunately, as the poles p, and p, approach the imaginary axis, both resonant
frequencies converge to w,, which is sometimes defined as still a third resonant
frequency.

In addition, no convenient expression exists for either the maximum value of
|Z,,(jw)| or the —3dB bandwidth of the circuit in the general case. However, for
the case where a « w, or Q, 1 is high, where Q, is defined as

wo WL 1
QL= 2— = =
o r wyrC
certain simplifying approximations in the expressions for Z,,(jw) may be made.

+ We shall reserve Q@ for “‘que” in parallel RLC circuits.

(2.3-3)
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Fig. 2.3-3 Sketch of magnitude and phase of Z, ,(jw) vs. w.

Specifically, with the aid of Fig. 2.3-4, we write Z,,(jw) in the form
SEF)p.

P17 p2

and observe that, for frequencies in the vicinity of p, (the only range for @ > 0 where
Z,,(jw) is significantly different from zero), the following approximations are valid :

Zy(jo) = Pz exp 0, ~ 0, — 0,) (2.3-4)

pt

P, X Wy, 0, =~ n/2, Py, T 2w, 0,, = n/2,

B =0} —a*=x w,.
Thus Eq. (2.3-4) may be written in the form

) 1 ) 1
Z(jo) = ~———exp _.]gpl =

2 _ b
Chp. 2Ca(1 42" % — ‘”")

w >0, (2.3-5)

which is identical in form to Eq. (2.2-9). If, in addition, we observe that

1w 1

%€~ 2 woC ~ Q0L = 0l = Reo 239
then Eq. (2.3~5) may be rewritten in the form
R
Z,(jo) = w"‘_ - w >0, (2.3-7)
1+ 2

which is exactly the expression for the impedance of a high-Q parallel RLC circuit
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Fig. 2.3-4 Phasor diagram XA

for evaluating Z,, (jw).

with R = R, = Qfr. Hence, for high values of Q, [specifically, 0, > 10 ensures the
accuracy of Eq. (2.3-7) within a few percent], the circuit of Fig. 2.3-1 may be modeled
by the circuit shown in Fig. 2.3-5. With this equivalence in circuits, we note from
the results of Section 2.2 that |Z,,(jo)),a = Ry BW =20 = r/L, BW/w, = 1/Q,.

In terms of the pole-zero diagram of Z,,(p) shown in Fig. 2.3-2, the effect of
replacing the series loss by a parallel loss is the movement of the zero.at — 2« to the
origin. This movement has little effect on Z,,(p) for small values of «, which exist

when Q, is high.

O ° ® o °
L
R..= Q’Zr > L S - =
r
O > O L 4
wol
QL =-— >10

Fig. 2.3-5 Equivalence of two parallel resonant circuits.
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In practice, the quickest way to convert series loss into parallel loss is to evaluate
Q1 = w,L/r, determine whether Q, > 10, and then form R,, = Qfr. Note that if
Q, > 10 and if there are no other losses in the network, then Q; = Q. Clearly
Qr = R./woL = Q. If other losses are present in the circuit, R, must be combine i
with them to determine Qr; thus Q; # Q.

Example 2.3-1 Determine values for r, L, and C for the circuit shown in Fig. 2.3-6
such that Z,,(jw) peaks to a value of 1000 Q at w, = 107 rad/sec (f = 1.6 MHz)
with a bandwidth of 5 x 10° rad/sec.

Solution. Since the bandwidih is narrow compared with w,, we have a high-Q
circuit for which -

— @Yo _ Yo _
=5 "pw-%
In addition,
1000 Q = |Z(jwo) ~ Qfr;

hence r = 2.5 Q. From the relationship

% = 24 ~ BW
we obtain
25Q
"~ 5 x 10° rad/sec = SuH,
and finally

C = 1/w§L = 2000 pF.
If the loss in a parallel resonant circuit appears in series with the capacitor, as
shown in Fig. 2.3-7, the input impedance is given.by
Vi) rplp + 1/rC)
Ifp)  p* + pr/L) + 1/LC’

Zy(p) = (2.3-8)
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Fig. 2.3-7 Parallel resonant circuit with loss o

in series with the capacitor.
Z\(p)

Figure 2.3-8 shows a pole-zero diagram of Z, (p) for the case where the poles form a
complex conjugate pair. Again, and by reasoning similar to that employed when the
loss is in a series with the inductor, it is readily shown that for Q. > 10, where
Oc = wo/200 = woL/r = 1/werC, the series loss r may be replaced by an equivalent
parallel loss R, of value QZr with negligible effect on Z,,(p).

In addition, it may be shown that if a loss r, appears in series with the inductor
and a loss r, appears in series with the capacitor of a parallel resonant circuit, and if

_wolL

L
0, =510 and Q=
r T

where w, = 1/./LC, then the total loss may be represented as the parallel combina-
tion of QZr,, Q%r,, and any existing shunt resistance. We shall explore this idea
further in the following example.

> 10,

Example 2.3-2 For the circuit shown in Fig. 2.3-9, determine the resonant radian
frequency w,, the bandwidth, @1, and Z,,(jw,).

Solution. We observe first that w, = 1/./LC = 107 rad/sec; hence

woL woL
0c =220, =2 — 40> 10
ra 1
Jjo
——‘ [0 = 2
-~ py
/ SF =r
/o P p,=-at/B
z [ _r
©- ki ¢ T
- ! c 1
rC \\ wo _‘/L——?‘
. B = +wy2—a?
\\X,_

Fig. 2.3-8 Pole-zero diagram of Z, ,(p). p2=pi
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Figure 2.3-9 o P

Consequently r; and r, may be replaced by equivalent parallel resistances each equal
to Qér; = 4kQ. The total shunt resistance is therefore the parallel combination of
2kQ, 4kQ, and 4 kQ, which of course is 1 kQ = R;. Since for the equivalent parallel
resonant circuit, L and C combine to produce an infinite impedance at w,,
Z(jwe) = Ry = 1 kQ. Also Q; = Ry/woL = 10'and BW = w,/Q, = 10° rad/séc.

2.4 PARALLEL RESONANT “TRANSFORMERLIKE” NETWORKS

In this section we shall consider the parallel resonant circuit in which the loss appears
across only a portion of the inductor or capacitor. Again we shall show that when
Q is high (or, equivalently, the complex poles of the circuit are close to the imaginary
axis), the circuit input impedance has essentially the same form as that of the parallel
RLC circuit. The loss may therefore be modeled as an equivalent parallel resistor
for which the results of Section 2.2 are directly applicable. In addition, we shall show
that the tapped and loaded inductor or capacitor possesses many of the properties
of an ideal transformer. Specifically, if the loading is light, the load across the tapped
energy-storage element may be modeled by the identical load placed across the
secondary of an ideal transformer whose primary is placed in parallel with the total
energy-storage element. This representation is valid not only for the evaluation of
the input impedance but also for the evaluation of the transfer impedance.

We begin our analysis with the circuit of Fig. 2.4-1, in which the loss in the form
of G appears across a portion of the capacitor. We shall then generalize to the case

_ GG

' + ) :l': S eres

(1) L§ c .
® 1
|

+0

G v,.(1)

Ol

Fig. 2.4-1 Parallel resonant circuit with partially loaded capacitor.
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where the loss appears across a portion of the inductor, and also (in Section 2.5) to
the case where the loss appears across the secondary of a physical transformer with
capacitively tuned primary.

For the circuit of Fig. 2.4-1 the input impedance is given by

Vo1(p) _ C

Il(p) 3 2 G 1 G ’
PP e et e c,

where C = C,C,/(C, + C,) is the series combination of C; and C,. If the loading

on C, is light, Z,,(p) must have a pair of complex poles in addition to a real-axis

pole, and thus may be written in the form

Zy(p) = (2.4-1)

i, G
Pe\P v e ¥,

Z:(p) = p ==, (2.4-2)

0+t a =P+ a+ p)
where p; = —a + j§ and p, = —a — jf are the complex conjugate poles and
py = —7 is the real-axis pole. Figure 2.4-2 is a typical pole-zero diagram of Z,,(p).

From Eq. (2.4-2) or from Fig. 2.4-2 it is apparent that the expression for Z,,(p)
reduces to the form of the input impedance of an equivalent parallel RLC circuit if
ps = z, or, equivalently, if y = G/C, + C,. To determine under what circumstances

jo
a -

SF

[ fod

o &
2y 4] °
Fig. 2.4-2 Typical pole-zero
diagram of Z ,(p).
X

P2 n*
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this pole-zero cancellation is achieved, and in addition the resultant values of « and 8
in terms of the circuit parameters of Fig. 2.4-1, we first write the denominator of
Eq. (2.4-2) in the form

P+ 0@ +a—jfp+a+jp) 043
= p? + pXy + 20) + pla® + B* + 2ap) + 90 + BP). ’

We then equate the corresponding powers of p in Eq. (2.4-3) and in the denominator
of Eq. (2.4-1) to obtain the set of equations

y + 200 = G/C,, (2.4-4a)
o + % + 2ay = 1/LC = i, (2.4-4b)
e + ﬂz) = G/LC,C,. (2.4-4c)

If, in addition, we define Q = w3/2ay, then Eqgs. (2.4-4a, b, and c) may be combined
and rearranged in the form

2 —_—
S (BN ) aes
o + B2 = wi(l — 1/, (2.4-5b)
G [ 1
T+ G\T= 1/9)’ (24-5¢)

where n = C/(C, + C;).

It now becomes clear from Eq. (2.4-5c¢) that if Q > 100 then the real-axis pole
and zero of Z, ,(p) lie within 1% of each other and, for all practical purposes, cancel
to yield Z,,(p) in the form of a parallel RLC circuit with o’ + % ~ w§ and
2a = (n*G/C)(1 — 1/nQ).

With the aid of Egs. (2.4-5a and c) we may also write

_ 0 _ QrQdl - 1O (246
20y 1-1/nQ

where Q7 = woC/n*G and Qg = wo(C, + C,)/G. For large values of Q Eq. (2.4-6)
reduces to

Q=x 0;:Qp + L/n 24-7)

Hence if Q- Qg (which may be directly Jctermined in terms of the circuit parameters)
is greater than 100, we can be sure that Q is sufficiently large to effect the desired
pole-zero cancellation. In addition, (,-Qg > 100 ensures the accuracy (within 179;)
of the approximation of Eq. (2.4-7), from which we obtain

n’G 1
P . 4-8)
* C (1 nQr Qg + l) (24-8
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wo(Cy+ Cy)
Q- Q¢>100, Q7= G’ O = —9(—‘(‘;_—2

o—=e
Zn(p) Zy(p)
Fi.g. 2.4—} Pargllel circuits G.= Gn2 (l _ L\ .- LT
with equivalent input a 0.0, +1 Ci+ (G,
impedances.
and in turn
1 1
p= p=
C C
Z x ~ s 2.4-9
1) p? + 2ap + a? + B2 2_‘_Geqp+i ( )
T T Le
where
1
Geu = n6(1 = 5]
4 nQr-Qg + 1

Equation (2.4-9) represents the input impedance of the equivalent RLC circuit

shown in Fig. 2.4-3.
If Q;QF > 100 and, in addition, nQ;.Qf is large, then G., reduces to the
simplified form

Gey = MG, nQrQp > L. (2.4-10)

In particular, if nQ;.Qg > 20, then G, = n*G within 5%, whereas if nQ7.Qg > 100,
then G., = n®’G within 1%. (Note that since n <1, nQ;.Qp > 100 ensures
QrQf > 100.) With this additional condition satisfied, we may transform the
equivalent circuit shown in Fig. 2.4-3 into an alternative and more useful form,
shown in Fig. 2.4-4. Clearly, if G is reflected through the ideal transform to obtain

[
Vo) vall) | l:n
|

I .
|
i,-(1)<> L — i QL C |
y |
Voz(’) T | G
° V - - i Ideal l
Q /_(A)()C _wo(C1+C2) n= C| L-———
TTmG ¥t G O GO+G

Fig. 2.4-4 Transformer model for resonant circuit with tapped and loaded capacitor.

vo2(?)
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G., = n°G, then the model of Fig. 2.4-3 results. However, the model of Fig. 2.4-4
is more versatile than the model of Fig. 2.4-3, since it provides a valid approximation
for not only the input impedance Z, (p) but also the transfer impedance Z,,(p) =
V,2(p)/1{p) for the case where Q; > 10 and also nQ,.Qp > 100.

To demonstrate this property, we note that, in general,

VoaP) _ Voa(p) Vou(p)
I(p)  V.ip) I{p)

’ Vo)) €y + Cop+ GAC, + C))
for the circuit of Figl 2.4-1. A pole-zero diagram for Z,,(p) is shown in Fig. 2.4-5.
From this diagram and from arguments similar to those given in Section 2.3, it is

clear that if we/y > 1 and, in addition, we/a > 1, then the zero at the origin effectively
cancels the pole at —y when one evaluates the frequency or time response of Z, ,(p)

le(P) =

where

Jw

i a

——— X

C

-1 1
SF= C (C|+C2)

Fig. 2.4-5 Pole-zero pattern of Z, ,(p). X
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graphically ; hence

Z,p) = E%Fzzll(p) = nZy,(p),
which is exactly the transfer impedance of the model of Fig. 2.4-4. Clearly the condi-
tion nQ;.Qr > 100 (which is required for the input impedance of the model of
Fig. 2.4-4) results in wo/x ~ Qr and wy/y = Qf; hence the combined conditions
nQr.Qg > 100 and Q¢ > 10 permit the use of the model of Fig. 2.4-4 for obtaining
both Z,,(p) and Z,,(p) for the circuit of Fig. 2.4-1. Specifically, if Qg > 10 (and
nQQg > 100), then | Z,,(jw)| obtained from the model is accurate within 19 of its
actual peak value and the phase of Z,(jw) is accurate within 6° over the passband.

If the phase angle of Z,,(jw) is critical or if Q; < 10 while Q7.Qf > 100, then
Z,,(jw) should be obtained from the model of Fig. 2.4-3 and Z,,(jw) should be
obtained by multiplying Z,,(jw) by H/jw). which is determined exactly from
Eq. (2.4-11).

At this point it is worthwhile to interpret physically the parameters n, C, Q.
and Qp empldyed in the models of Figs. 2.4-3 and 2.4-4. Clearly n is the voltage
division ratio of the two series capacitors with the load across C, removed (G = 0);
that is,;

_ UoZ([)
Vo1t G=0

The capacitor C is just the total capacitance shunting L in the circuit of Fig. 2.4-1
obtained with G = 0. In addition, Q;. = w,C/n*G is the Q of the model of Fig. 2.4-4,
whereas Qp = wo(C,; + C,)/G is the ratio of the output resistance (1/G) to the
reactance at w, which shunts G, evaluated with the input voltage v,(t) of the circuit
of Fig. 4.2-1 reduced to zero (i.e., with the input shorted). We shall now use the
same physical interpretation to obtain the corresponding parameters for a parallel
RLC circuit with a tapped and loaded inductor.

Consider the parallel RLC circuit of Fig. 2.4-6. By a procedure similar to that
employed with the circuit of Fig. 2.4-1, we can show that the transformer model,
also shown in Fig. 2.4-6, mdy be employed to obtain expressions for Z,,{p) and
Z ,,(p) provided that

nQ Qg > 100 and Qr > 10,

where in this case Qp = woC/n?G, Qp = woL,L,/G(L, + L), wy = 1//LC,
L =1L, + L, andn=L,/(L, + L,). Here again we observe that ’

_ Eoz(t)
vor(t)g=0
that L is the inductance shunting C with G = 0, that Q. is the Q of the model of
Fig. 2.4-6, and that Qg is the ratio of 1/G to the reactance at w, shunting G, evaluated
with v,,(t) = 0. This set of conditions is valid for any of the transformerlike networks
shown in Table 2.5-1 and thus provides a handy mnemonic rule. If for the circuit of
Fig. 2.4-6 Q;.Qf > 100 but Q@ < 10, Z,,(p) may be evaluated from an equivalent
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wil) wit) R

—wC 5 .= -
0r=306 ' @ GGLL, "L +L, L=hitle

L,+ L, L,

Fig. 2.4-6 Parallel RLC circuit with tapped and loaded inductor and its transformer model.

parallel RLC circuit with a shunt resistance R, = 1/G,,, where again

nQr-Qp + 1
In addition, Z,,(p) may be evaluated as Z,,(p) = Z,,(p)H (p), where

M) ! i
P =L G6r+ (L, + L)LIL,G

Geg = nZG(l - —1—) 2.4-12)

(2.4-13)

Shunt Input Resistance

If an additional shunt input resistance R, is placed across the parallel RLC circuit
with a tapped and loaded capacitor, as shown in Fig. 2.4-7, it is apparent that the
input impedance

v, V,
Zi) =100 = RUZu) and Zu) = 120 = 2, pyH ),

where Z,,(p) and H (p) are the input impedance and transfer voltage function of the
circuit of Fig. 2.4-1. Consequently, if nQ;.Q; > 100, Z,,(p) may be obtained from

var (1)

oD e -]

CZ G vol(’)

2
——
+0

1
S

Fig. 2.4-7 Parallel RLC circuit
with tapped and loaded capacitor _, _ GG
and an input resistance. Zi(p) Zutp G +G
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vou{?) I

1:n- _ °
ii(”Q) RL L C b ¢ 1

G Vo2 (1)

® & O

__WoC _ o
Q’"GL+nZG >10, nQp Qp >100, Qr>10, e

Fig. 2.4-8 Model for circuit of Fig. 2.4-7 used to obtain Z, ,(p) and Z',,(p).

an equivalent parallel RLC circuit with a shunt resistance of 1/n*G. and in turn
Z 1(p) may be obtained from the equivalent parallel RLC circuit with shunt resistance
1/(n*G + G,), shunt capacitance C, and shunt inductance L. Clearly, for this
resultant parallel RLC circuit

_ woC o
Qr=26+6, 2
where —a is the real part of the poles of Z'(p).

If both we/2a’ = Qr > 10 and we/y > 10, where y is the pole of H,(p), then
again Z,,(p) = Zi,(pn. If nQr.Qg > 100, then wo/y = Qg; thus if nQ/Qg > 100,
Qp > 10, and Q; > 10, then the model shown in Fig. 2.4-8 may be used to obtain
both Z,(p) and Z),(p) for the circuit of Fig. 2.4-7. The same arguments apply to
the parallel RLC circuit with a tapped and loaded inductor.

(2.4-14)

Example 2.4-1 For the circuit shown in Fig. 2.4-9, determine an expression for
v,,(t) and v,,(t) as well as the circuit bandwidth.

Solution. 1f we assume nQp.Qr > 100 and Qp > 10, we may replace the original
circuit by the model shown in Fig. 2.4-10, for which
C, 1 C,C,

n=———=2, C = ——— = 1000 pF,
C.+C, 2 C, + G, P
1 . 500 Q
Wy = T‘IE = 107 rad/sec, Z(jwg) = Reg = = 2kQ,
v, (1)
oL
i (1y=1 cos 107 T .
i ) cos { 10 }AH I Ai
I=1mA
C, 500Q  vult)
Figure 2.4-9 )i I . 5
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. vol(’)

[
. t:n
io( 4 ) 10pH 1000 pF 3 5 R °
500 Q v,.(0)
Figure 2.4-10 ° . —5 . _ 5
and
Z,(jwe) = nZ,(jwe) = 1kQ.
In addition we note that
R
Qr = ﬁ = 20, Q& = (500 Qwo(C, + C,) = 20, and nQr.Qp = 200;
0

these values justify the use of the model.

Since the current drive is at the resonant frequency w,, where the input
impedance appears purely resistive [Z,,(jw,) = R..], v,;(t) may be written directly
in the form

Uo1(t) = IR 4 cos 107t = 2V cos 107t,
and hence :

y2(t) = nv,,(t) = 1 Vcos 1071.

Finally, since the only loading in the circuit is across C,, Q; = Qr and BW =
wo/Qr = 5 x 10° rad/sec.

Example 2.4-2 For the circuit shown in Fig. 2.4-11 determine values for C,, C,,
and L such that the circuit resonates at f, = 16 MHz (w, = 108 rad/sec) with a
bandwidth of 1.06 MHz [BW = (107/1.5)rad/sec] and achieves maximum signal
transmission to R, at resonance.

Solution. If we again assume nQr.Qg > 100, Q; > 10, and Q; > 10, we may replace
the original circuit by the model shown in Fig. 2.4-12. Since at resonance the
inductor and capacitor combine to produce an open circuit, maximum signal (or

I

\AAS
~
i
)
o

ii(0) Cf) R, S9kQ

I
A
s +

Figure 2.4-11
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[ 4
I:n
(1) R.S9kQ L C o > e}
N
1 kQ v(1)

R, -
A4 oL —0— L O

S = A

Figure 2.4-12 G+G G+G VLT

power) is transmitted to R, in the purely resistive network when n is chosen to
“match’ R to R, i.e.,, when

n=JRJR, = /1kQ9kQ =1/3 = C,/(C, + C,).

With this value of n, R, is reflected through the ideal transformer as a 9 kQ resistor ;

thus the total input resistance at resonance is 4.5kQ. Recalling that BW = 1/RC for
a parallel RLC circuit, we obtain

el GG 1100
T C.FC, @SkQBW 3P0

Replacing C,/(C, + C,) by n = 3, we obtain

C 1
C, = — = 100 pF, C1=(~—1)C2:50pF,
n n

and finally
1

L= =30uH.
wjC 0u

At this point the original assumption must be checked. It is apparent that

1 kQ
Qr = —5-weC = 30 and Or = (1 kQuw(C, + C,) = 15;
n

hence nQ;.Qp = 150. In addition, we note that for the circuit in this example
Qr = wo/BW = 15; thus the use of the model is justified.

Example 2.4-3 For the circuit shown in Fig. 2.4-13, determine Z,,(jw,) and
Z1,(jo).

Solution. For the circuit shown, w,=1//LC =107 rad/sec and n=L,/(L, + L,)=
1/100. Hence

1Q 1Q 1Q
Qr = n*wolL = 100, O = L\L, = woL, -

a) R .
°Ly + L,

I, and  Q;Qp = 100.
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v,,ﬁt)

L
i,(z)(f c * —o
v C - 1000 pF
L, 1Q Vo) L;-99uH
L, 0.1pH
Figure 2.4-13 * * * -0
Since Q- Qp = 100 but nQ;.Qr = 1,
. 1 1Q
le(-]wO)=Req= =n—2=20kQ

' PR S
"G(l n0r Qs + 1] 2

(cf. Eq. 2.4-12). On the other hand, since Q < 10, the transformer model shown in
Fig. 2.4-6 may not be used to determine Z,,(p). However, the exact expression for
Z,,(p) is given by

1

LG
L, +L,
L,L,G

If we substitute jw, = j107 rad/sec for p in Eq. (2.4-16), we obtain Zy,(jwy) I the
form

Zy2(p) = Z((pH (p) = Z,,(p) (2.4-15)

1
Z,(j =Q20kQ)— —,
12(jwe) = ( )100(1 ¥))
from which we obtain

. 200 ) .
|Z2(jwo)l = —2 Q and arg Z,(jwy) = —45°.

7

2.5 PARALLEL RESONANT TRANSFORMERS

In applications where a narrowband circuit is needed to isolate the load from the
driving source or to provide a 180° phase inversion between the input signal and the
load at resonance, a physical transformer must be employed in the parallel resonant
circuit as shown in Fig. 2.5-1. In addition, the physical transformer must be employed
if a “step-up” turns ratio is required between the driving source and the load at
resonance for the purpose of matching a high load impedance to a small source
impedance. The “transformerlike™ networks discussed in the previous section are
capable of providing only a “‘step-down” turns ratio.

The physical transformer may also be employed in a parallel resonant circuit as
an auto transformer, shown in Fig. 2.5-2. In this configuration the transformer does
not provide isolation, 180° phase inversion, or a *‘step-up” turns ratio at resonance.
Its usefulness stems from the fact that it is a more realistic model for the inductive



25 PARALLEL RESONANT TRANSFORMERS 49

o
' M=kvLiL,
i (r)<> voi(t) 7<C Ld 3 * i
(]
L, G vo2(1)
_ 5

Fig. 2.5-1 Transttwmer with tuned primary and loaded secondary.

°
* M=kv/LiL,
k
i, (t)Q) vou(t) 5<C L PY %}
° +
Lz G Vaz(’)
® é ¢ )

Fig. 2.5-2 Auto transformer with tuned primary and loaded secondary.

“transformerlike”’ parallel resonant circuit, since it includes the effect of magnetic
coupling between the two inductors in the form of mutual inductance. The auto-
transformer representation is especially useful when the two inductors are wound on
the same core or obtained by providing a tap on a single inductor. As is shown in
Eig. 2.5-2, L, and L, are defined differently in this case than when the two inductors
are independent. This is done so that the networks of Figs. 2.5-1 and 2.5-2 can be
analyzed by means of the same model.

To obtain expressions for the input and transfer impedances of the two parallel
resonant transformer networks, the results of Section 2.4 may be applied directly.
This becomes apparent if we replace the physical transformers of Figs. 2.5-1 and
2.5-2 by their common “‘two-inductor” terminal equivalent model (which is derived
in the appendix to this chapter) as shown in Fig. 2.5-3. Clearly the ideal transformer
reflects a net conductance of G/a* = GL,/k*L, across the inductor kL, and thus the

——
Va’(t) I a:l 1
- - ° _ 5
k2)L, ' ° | +
+,
i,(l)< v ()= C k2L, | | G v, A1)
Fig. 2.5-3 Circuits | | .
of Figs. 2.5-1 and | |
2.5-2 with transfor- - i | _
mers replaced by ¢ ® ! | e o
their “two-inductor” Connection exists | Ideal a—+k / L
model. : for auto transformer — — — -J NI

N
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Vo, (1) _ l:in i a'l _
° ® ® [ J }

i(l)<> C Ly G Vo2 (1)

Fig. 2.5-4 High-Q
model for the cir-

cuits of Figs. 2.5-1 ® ¢ 'S * -0
and 2.5-2. L woC 1
= = =20 =
n=k2, a=k I, 0, (M)G, Q: WoL2(1- kG
L

circuit becomes identical to the circuit of Fig. 2.4-6. Consequently, if

n'Qr.Qp > 100t and Qf > 10,
where
woC o C 1

= k2 = = =5
n=k. Or=gra Ly ™ % woL,(1 — KOG’

then we may replace the circuit to the left of the ideal transformer by its equivalent
transformer model as shown in Fig. 2.5-4 (cf. Fig. 2.4-6).

If we now combine the two ideal transformers in cascade to obtain a single ideal
transformer with a transformation ration = n'/a = k\/L,/L, = M/L, the model of
Fig. 2.5-4 reduces to the desired model for determining Z,,(p) and Z,,(p), shown in
Fig. 2.5-5. Here again we observe for the circuits of Figs. 2.5-1 and 2.5-2 that

Uoz(t)
o1(0)|G=0

that L, is the total inductance shunting C with G = 0, that Q, is the ratio of the
resistance (1/G) to the total reactance at w, shunting G with v,,(t) = 0, and that
Q- is the Q of the model of Fig. 2.5-5.

-

1l

+0O

f,('>d>vox(') -~C ;L §<; Vo2 (1)

-
1
+ |
|
|
|
I
|

|
f
|
!
I
l
l
I
J

Fig. 25-5 Final ©
model for parallel ._ foull

resonant circuits Connection exists

including transformers. for auto transformer

T We use n’ in lieu of n because n is being reserved for the overall transformer ratio.
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Table 2.5—1 Equivalent circuits and pertinent relationships for parallel resonant ‘“‘transformer-

like” networks

Model f%r )
Circuit determining p n w,
nd le(p)“ 0 Qr O

G
L woC | wolCH+C,)
C, 3G nG G
[og I ! *—O
g
A
)
=
Lin L 1 woC Li+L, | =
C L 2 [ 1 2 g
¢ l t* 3¢ | Ll | JIC | WG | wL LG | ¥
> —_
. 3
L=L,+L, m=n N
S
w)
§
e
< 1:n ‘E
M 1 @ C 1 E
‘ AVE P — - .-
C L] E G C Ll :. G L] L|C nzG %Lz(l_kw -l
>
n’-—$k2
1n M 1 wC

: 1
Cc==L, CxL L, C| n%G |uL(1-K)G
%o Bz | JLC ol
n'=k1

Limitations for Z,,(p) : "Gy’ Q¢ >100 and Q, > 10

Table 2.5-1 summarizes these properties that we have discussed.

Since the turns ratio n of an auto transformer in a high-Q parallel resonant
circuit may be expressed in terms of an unloaded voltage ratio, the physical construc-
tion of the auto transformer is quite straightforward. One selects (or winds) an
inductor whose inductance is the desired value of L,, places a voltage source
V1 cos.wet across the entire inductor, and moves a probe along the length of the
inductor. At the point where the voltage ¥, cos wyt measured between the probe
and the bottom of the inductor is equal to nV, , a lead is soldered and the construction
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M kVLL,

¢ [ ] [ ] ? * +

i) D win  Lijgl: € R, vaalt)

Fig. 2.5-6 Parallel reso-
nant transformer with B
tuned secondary. * ® 0

of the auto transformer is complete. Clearly this transformer resonates at

wy = 1/i/L{C and possesses a turns ratio of n.

Before ending our discussion of parallel resonant transformer circuits, we should
note that no restrictions on the coefficient of coupling of the physical transformer
were required to derive the high-Q model of Fig. 2.5-5. However, if k approaches
unity, Qg approaches infinity and the model of Fig. 2.5-5 becomes an exact model
for the parallel resonant transformer, regardless of the value of G. If we had decided
to restrict our attention to closely coupled transformers, we could have obtained
the model of Fig. 2.5-5 directly by letting k = 1 in the model of Fig. 2.5-3 and noting

thatn = 1/a = +./L,/L, = +M/L,.
_ Transformers with Tuned Secondaries

In many applications the secondary, rather than the primary, of a transformer is
. tuned, as shown in Fig. 2.5-6. Such coupling is usually employed to minimize the
" effect of any capacitance shunting it) (for instance, collector capacitance) on the
" tuning of the resonant circuit. Specifically, if the transformer steps up impedance by
a factor of a?, the effective capacitance shunting C is 1/a” times the capacitance
shunting i(t). If a = 10 and the current source capacity is 2 pF, only 0.02 pF reflects
through to load C.

The tuned secondary is also employed with transistor IF amplifiers to keep the
collector impedance and, in turn, the collector voltage small. This low impedance
level not only reduces the “Miller’” capacitance seen at the transistor input, but also
reduces the effect of output tuning on the input impedance. Such isolation is
essential if stages are to be tuned independently to obtain an overall IF transfer
function.

(1—k2) Ly
Va'a el 7N . 4 O
+
+
+
i(l)'C) v, (1) L—‘Z m(t)C’\D <1> l’—g i o-C R, Voalt)
- o —o

Fig. 2.5-7 Hybrid controlled-source model replacing transformer of Fig. 2.5-7.
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To obtain expressions for the input and transfer impedance of the circuit shown
in Fig. 2.5-6, we first replace the transformer by its hybrid controlled-source model
(derived in the appendix to this chapter), as shown in Fig. 2.5-7. With the model
(which is not based on a high-Q approximation) in place, it is immediately apparent
that Z,,(p) = V,,(p)/I{p) is the input impedance of a parallel RLC circuit multiplied
by M/L, ; specifically,

ML
L, C
Zylp) = 2 1 (2.5-1)
2 -
PPrRr.ctL,C
In addition,
, M
Z(p)=p(1 — KL, + L—le(p)
? | (2.5-2)
e
M\?2 c
— pl — KL, + (—) =
2 2 s
PrRCcT e

We therefore observe that the effective transformation ratio is M/L,, the factor by
which ii(t) is reduced when reflected into the secondary and the factor squared by
which the parallel RLC circuit is reflected into the primary. We also observe that if
ift) is a periodic input current of period T = 2n/w,, then v,,(t) will.be a sinusoid
with a frequency w, if Q7 = weR,C > 1, since the tuned circuit will extract only the
fundamental component of i(t). On the other hand, because of the series inductance

(1 — k)L, v,,(t) will be rich in harmonic content. Y

Example 2.5-1 For the circuit shown in Fig. 2.5-8 derive an exp;?ession for Z,,(p)

and Z;(p) with the assumption that the circuit is a high-Q one.

Solution. Using the hybrid controlled-source model, we may first reflect ift) through
the transformer to obtain a source of (M/L,)i(t) shunting R,. If we now assume

nQr Qg > 100, QO > 10, and Qr > 10,

vo2?)

L4
Vo ( ’) M

' 1
R °
. L L
: ‘n‘(’)C L, 2 l
C2 G V,)“)
Figure 2.5-8 ? s I o)

+0
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where
_ Cl _ C()oc _ woc
n=c+¢; v T wc+ay
wo(Cy + Cy) C,C,
=——, d C=—
Qe G an C, +C,

then we may replace the tapped capacitor by an ideal transformer to obtain the
' model shown in Fig. 2.5-9. From this circuit it is immediately apparent that

M 1
L,’c
e (n*G.+ G.)p N 1

C L,C

le(P) =

(2.5-3)

and
nM 1
L,rc
P+ (nG + Gp + 1

Zla(P) =

Networks of the form shown in Fig. 2.5-9 are usually employed when a single
tuned response is required, as well as a low impedance across i{t) and an overall
voltage step-down ratio. In addition, such networks are employed to keep stray
capacitance across both iff) and G from affecting the tuning of the parallel RLC
circuit.

_ vua(l)

.
I:n
M . =
I, C) G, L, -—C ° 3
- E G Vo (1)
Figure 2.5-9 & - e o
_ GG C,

Ga+c " Grer

2.6 THREE-WINDING PARALLEL RESONANT TRANSFORMER

In this section we shall develop a model for the three-winding parallel resonant
transformer shown in Fig. 2.6-1. Since this circuit is a fundamental component not
only in the antenna stage, but also in the oscillator and IF amplifier stages of super-
heterodyne receivers, a simplified medel is required to facilitate its analysis and
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Mk. ? Q
+ ] /
i) volt) L) My C=[: G, Va2 (1)
_ \ 0
Fig. 2.6-1 Three- ) ve)
winding parallel M, o~ — . °

resonant transformer.

design. In addition, the model aids in the understanding of the physical operation of
the transformer network.

We begin by presenting an equivalent circuit for the three-winding transformer.
We then incorporate this model into the circuit of Fig. 2.6-1 and, with the results of
the previous section and the assumption of high-Q, reduce the circuit to its final
simplified model.

The most general model for the three-winding transformer is quite complicated.
However, if we place the restriction on the transformer that

My, My,
L, M,y

(2.6-1)

where M;; = M, is the mutual inductance between the ith and the jth windings,
then a straightforward and useful model may be obtained. Equation (2.6-1) can be
cast in the equivalent form

kizkay = ky3 (2.6-2)

by noting that k;; = M;;/\/L,L;, where k;; is the coefficient of coupling between the
ith and jth windings. Although, in gereral, Eq. (2.6-1) is not always exactly satisfied,
it is approximately satisfied in a larpe number of practical cases. In particular, if
L, and L; are closely coupled (they are usually wound on the same core), then
ky3 = 1 and, of course, k,, ~ k,5; hence Eq. (2.6-1) is valid. In addition, if the
transformer is placed in a high-Q circuit, it can be shown, by the techniques developed
in Section 2.4, that even if Eq. (2.6-1) is not satisfied, ihe impedances obtained on the
assumption that it is are accurate within a few percent. The proof of this statement
is left to the interested reader. With the restriction of Eq. (2.6-1), the three-winding
transformer has the terminal equivalent model shown in Fig. 2.6-2. This equivalence
1s readily demonstrated by showing that both the transformer and its model have
the identical set of defining equations:

Vi = pLil, + pM,1, + pM,;1;,
Vy = pM,1, + pLyl; + pMysly, (2.6-3)
Vi = pM 51, + pM,3l, + pL;1;.

If the transformer is now replaced by its model in the circuit of Fig. 2.6-1, the
equivalent circuit shown in Fig. 2.6-3 results. It is apparent that the right-hand
portion of the circuit in Fig. 2.6-3 is simply the parallel resonant auto transformer
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JAD)

+0

[e2]

26

Lo
—=
+
M, M
Vi(p) C’D'Z.:z Va(p) C) Z;z 1(p) ﬂl/n’ : E L, J;_(p) Va(p)
+
}LJ VJ(P)
5 & = by

M) M ki k
L.=L, (1_ L”)= L,(I—Lﬁ)
Ll MZ} k23

Fig. 2.6-2 Terminal equivalent circuit for three-winding transformers with M {,/L, = M ,/M,;.

considered in Section 2.5; hence we may apply the results of that section directly.

Specifically, if
n0rQp > 100 (W =kys), Qg>10, and  Qp > 10,

where |
Q)Oc Lz
= — = T
Qr G; M24 Qs woL4(1 — k%s)Gs
kyok
L (l— 122313 ) o0
B
M3

\ )
i1 Cf) V1) <5L_2 .,2(1) t)—” ity /=C §02 L>S L 4 ?
N - Ly Gy (D)
I\ -9 %

Fig. 2.6-3 Equivalent circuit for parallel resonant three-winding transformer.

1
woLs(1 — ka3ky3/ky3)Gsy

t If Eq. (2.6-1) is not satisfied, Q is gfven by: Q=
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and 0r = woC
T7 G, + Gy(M,a/Ly)*

then the circuit of Fig. 2.6-3 reduces to the final high-Q simplified form shown in
Fig. 2.6-4. With the aid of this model we may immediately write

p—.
Voa(P) _ My, C
Zyy(p) = =12 , (2.6-4
12(P) o "L, N )
PFPr—¢ TL,c
where G, = G, + G3(M,3/L,)*. In addition, we obtain
1
; P
_Valp) _ _ M, M, C
sz(R) = () = nZ,(p) = L, L, , . 7G.. N 1 (2.6-5)
) P+t
and
1
Vo1(p) ( klzkls) M12)2 C
Z = =pL,|1 - + . (266
11(P) 1{p) pL, Ky L, ; & *1_ ( )
¢ TL,C

It is interesting to note that Z,,(p) and Z, 5(p) are in the form of the impedance
of a parallel RLC circuit multiplied by a scale factor, whereas Z,,(p) contains an
additional term which may be modeled as a series inductor. Consequently, if ift)
were a periddic waveform (of period 27/w,) containing several harmonics plus the
fundamental, and Q were 10 or greater, v,,(t) and v,5(¢) would be sinusoidal in form,
whereas v,,(t) would be a periodic function with considerable harmonic content.
This effect is due to the series inductor of Z,,(p), which, unlike the parallel RLC
circuit, does not appear as a small impedance at the harmonics of w,.

Example 2.6-1 For the circuit shown in Fig. 2.6-5 determine the value of M,
which maximizes v,5(t). Also determine (with the value of M, found) an expression
for v,,(t) and v,,(¢) and values for Q; and BW.

b(-=5e)

M +

Fig. 2.6-4 High-Q three-winding e M2
tuned transformer model. L,
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_ val)

@ T

i:(l) Ll >L2 100 pF §R2

ST
§ }LS Ry vo3(0)
Figure 2.6-5 2 N

i()=(1 mA) sin 107¢

ol
{

R;=10Q Mi;=10uH

L| =2 MH k23 =0.5
Solution. If we assume n'QrQg > 100, Q¢ > 10, and Q7 > 10, we may employ the
model of Fig. 2.6-4 omitting L, and C (which resonate in this case atw, = 107 rad/sec)
as shown in Fig. 2.6-6. Now v,;(t) 1s maximized if n is chosén to match the 10 Q
resistor to the 400 kQ resistor, i.e., if

M, 100
= = = 0.005.
"=, T Vaoka

Therefore, M,;~= 100 uH x 0.005 = 4 uH, and, since ky3 = 0.5, Ly = M33/k};L, =
0.01 uH. Consequently,

1 400

QE = w0L3(1 - k§3)G3 - —3_

and
w,C
Or =—3
and thus n’QT'QE = k23QT'QE = 80,(XX)/3

To obtain an expression for v,; we reflect the input current source and the
400-kQ resistor across the 10Q output resistor. The reflected resistance is
(400 kQ)n? = 10 Q and the reflected current source is

M, L,
LZ M23

——<(sin 10"t) mA = 20 mA sin 107¢;

V-}(’)

’2’—2'2 i) Q) ' Yo (1) 2400 kQ

10Q
Figuré 2.6-6 Lz
Ideal
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hence
Uo3(t) = 20 mA)(5Q)sin 107t = 0.1 Vsin 107t

and

= 20 Vsin 107¢.-

003([)
n

voZ(t) =

Finally, by observing that R reflects into the secondary as 400 kQ, we obtain
200 kQ
5 = 200
(10" rad/sec)(100 uH)
(a slightly higher value than one would normally expect from an inductor) and
10" rad/sec _
200
Since n'Q1.Qg » 100, Q; > 10, and Q1 > 10, use of the model is justified.

Qr =

BW = 5 x 10% radjsec.

PROBLEMS

2.1 For the transformer with the loss terms shown in Figure 2.P-1, determine the value of L,
required to match an 8 Q load to a 3200 Q source in the midbgnd. What are the upper and
lower —3 dB frequencies for this case? What is the open-circuit voltage transformation
ratio of this transformer? What is the efficiency of the unit when working under the originally

specified conditions?

2.2 Assume that the transformer (with the same values of k, L, and L,) of Problem 2.1 is used

between a 3 Q load and a 1200 Q source. Find the 3 dB frequencies and the efficiency.

2.3 Repeat Problem 2.2 for the case where the load is 20 Q and the source is 8000 Q.

2.4 Suppose the source output in Problem 2.1 is such that 10 mW of ac power reaches the
8 Q load. Plot load power vs. load impedance for the case where the load varies between

2 Q and 32 Q while the other parameters of the system are maintained constant.

100 Q k 0.50Q
o VWA VW o
) g °
L L
' ; ? L, -1H
k =0.98
fo! 7ol

Figure 2.P-1
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100 pF
1L
o= LA °
. Zy1(jw) /'3{41 3000 pF 30Q
O~ O
Figure 2.P-2

25" Consider the “matching network™ of Figure 2.P-2, in which L is tuned to make Z,,(jw)
resonate at wo = 2 x 10° (L, has a Q of 100 at w = 2 x 10°rps). Find Z,,(jw,) and the
input Q;. What is the approximate phase shift between v,,(t) and v,,(t) at w = 2 x 10%?
If the peak sinusoid current flowing into Z,,(jw) at resonance is 1 mA, what is the peak
value of v,,(t)?

26 Repeat Problem 2.5 for the case where the 30 Q load is increased to 1000 Q.

2.7, A capacitor with a Q of 200 is combined with a coil with a Q of 80 and a 20 kQQ resistor to
*produce a parallel tuned circuit resonant at 60 x 106\rp& Letting C = 25 pF, find the
. bandwidth of the resultant circuit.

2.8 Repeat Problem 2.7 for the same coil and capacitor connected in series with a 10 Q resistor
to form a series resonant circuit at the same frequency. If the power input to this circuit
at resonance is 10 W, how much power is dissipated in each series element?

2.9 For the circuit of Figure 2.P-3, determine v,(t) at resonance. If the capacitors are lossless
and the coil loss is included in the 10 kQ resistor, what is the circuit’s Q? Assuming that
the input current generator also produces a 0.5mA peak sinusoidal component at both
2w, and 3w,, estimate the relative distortion (each harmonic separately) at v,(t). (The
pole-zero diagram of Fig. 2.4-2 provides an easy way to estimate distortion at harmonic
frequencies.)

2.10 Assume that i(¢) in the circuit of Fig. 2.P—4 is a sinusoidal current with a peak value of
15mA and a radian frequency of w, = 4 x 10%rps and C, is chosen to resonate at w,.

1013 pF
. . It . °
1AY +
i) ‘) 10 pH 10kQ 0.079 uF =< 56 Q 500 pF vo(1)
° o

i{t) = (1 mA) sin wyt
Figure 2.P-3
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oM Ro= 2500 Q
9 R, = 25Q, Co=200pF
Q2 = (AJ()L)/ 2*‘—’70
R Ly =30uH, M=3uH
L ] [ ]

ift) q> L 3 L, G - ‘L
R, Cy

r T

M— +

Figure 2.P4

Find the output voltage across R,. Make reasonable assumptions. State these assumptions
clearly. What is the Q of the circuit?

211 For each of the networks shown in Fig. 2.P-5, determine wq, Q7. BW, Z; (jwo). and

Z,(jwo)-
Lo
o o - J}
IOpH 5Q TZOOOpF
%21((2 == 1000 pF l » °
10 uH ZWPFT 500 Kz
¢ o . &——o
-l—-> Vol
o o
®
M
1000 pF ¢ °
+
1kQ Vs
o . e e o
LI:IO
M=5u
L=10p.H

Figure 2.P-5



APPENDIX TO CHAPTER 2

TRANSFORMER EQUIVALENT CIRCUITS

The two-winding transformer shown in Fig. 2.A-1 may be described completely in
terms of its terminal equations:

Vip) = pL,1,(p) + pMI,(p),

(2.A-1)
Va(p) = pM1,(p) + pL,1,(p).

) L)
ao —0b
+ M +
o [ ]

W(p) VAp)
L L,
‘a0 o

Fig. 2.A-1 Two-winding transformer.

Consequently, any network which has the same defining equations as the transformer
may be substituted for the transformer in any circuit in which the transformer is
placed, and this substitution will not affect the voltages or currents in the overall
circuit. Several networks having the same defining equations as the transformer
(and therefore referred to as terminal equivalents of the transformer) are shown in
Fig. 2.A-2. By reflecting one or more of the various inductors through the ideal
transformers in the circuits of Fig. 2.A-2, one can obtain a number of other terminal
equivalent networks for the transformer.

There are several procedures for verifying that the networks of Fig. 2.A-2 are
indeed terminal equivalents for the transformer or for evaluating the equivalent
inductances of the new networks. One approach is to observe that Eq. (2A-1) is
equivalent to a statement that the impedance at a-a’ with b-b’ open is pL,, that the
impedance at b-b" with a-a’ open is pL,, and that the ratio of the voltage at b-b’
to a current applied at a—a’ with b-b’ open is pM. We then choose the values of the
proposed equivalent circuit so that these three conditions are met. The values shown
in Fig. 2.A-2 do meet these conditions.

62
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a L, M L, M - &
1°3¢°
M | I
g I
ME— t—
LiL, M2 ideal
g ® fYYA!fY'\ o | T | g
Te ¢ .I
LiL,- M2 LiL, M2 ,
L, M L, M ] |
4 Pl
e hd | S |
(b) Ideal
k2
g SR Far—8 |
i. .l a-k /i
VI,
k2L, | |
k- M
a | ARCe
O L g — — O

()

g
8

Fig. 2.A-2 Terminal equivalent networks for transformers.

(1 —k2)L; . b
a:l
| !
ol
I
l
l
|
| b
. 4 O
Il | S—|
i b Ideal
a=k L
(a) (b) (c)

Fig. 2.A-3 Terminal equivalent transformers.

A transformer may have a terminal equivalent network which is also a trans-
former. To illustrate this, Fig. 2.A-3 shows two of the many terminal equivalent
networks for an auto transformer (M is the mutual inductance between L, and L,).

Terminal equivalent networks for the transformer of Fig. 2A-1 may also take
the form of networks containing controlled sources. Three such networks are shown
in Fig. 2.A4.
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The dots at the ends of the transformer windings in Figs. 2.A-1,2.A- 2, and 2.A-3
show the relative directions of induced voltages. A current flowing into a dotted
winding causes a plus-to-minus drop across this winding and induces a voltage in
all other windings such that the dotted end is positive. Moving the dot to the opposite
end of the transformer winding on the secondary of Fig. 2.A-1 would reverse the
signs of both of the pM-terms in Eq. (2.A-1). It would also lead to a reversal of the _
secondary dot on the transformers of Fig. 2.A-2 and to the reversal of the direction
of both of the generators in Figs. 2.A-4(a), (b), and (c). For the auto transformer,
placing the dot at the bottom of L, would reverse the sign of the mutual term in
Fig. 2.A-3(b) and reverse the dot on the secondary of the transformer of Fig. 2.A-3(c).

I, (p) L, L, 1:(p)
o Y5
+ +
+ +

Vi(p) pMIL(p) C«D pMI (p) Va(p)
S (a) o
1, (p) h(p)
o— Py [ L 2 -0
+ +
W) L %mmd) ¢%1« L ko)
o ‘ (b) e
5L(p) L(p)

Y Y\ . 2 O

Q |

o )
+ (1-k>)L, +
M +
Vi(p) L VZ(p)G) %il,(p) L, €109
s M
(©

Fig. 2.A-4 Terminal equivalent networks containing controlled sources.



CHAPTER 3

TRANSMISSION OF SIGNALS
THROUGH NARROWBAND FILTERS

The purpose of this chapter is to examine a simplified method of determining the
output response of a class of “narrowband” high-frequency networks when these
networks are driven by any one of a variety of useful signals. Among these signais
we include steps, impulses, and various amplitude-modulated signals centered within
the passband of the filter.

First we define the class of networks to be considered, then we define the low-pass
equivalent circuit for such networks, and finally we show that the response of the
original network to a given signal is a function of the response of the low-pass
equivalent circuit either to the signal or, in the case of amplitude-modulated signals,
to the envelope of the modulated signal. Thus, where the method is applicable, the
original complicated network response problem is replaced by a simplified and
reasonably accurate approximate solution. '

It has been suggested to us that such material is covered elsewhere and need not
be repeated here. Our experience has been that at least a brief review of these congepts,
perhaps from a viewpoint that the reader has not encountered before, is useful in
understanding their use in later chapters.

3.1 LOW-PASS EQUIVALENT NETWORKS
FOR SYMMETRICAL BANDPASS NETWORKS

For a general narrowband network whose transfer function is H(p) and whose pass-
band is centered about w,, the magnitude and phase of H(jw) vs. w take the form
shown in Fig. 3.1-1. If H(jw) is indeed narrowband, then the amplitude response,
[H(jw)|, falls essentially to zero a short distance on either side of w,, as shown. In

|H(jw) |

‘ — | H(—juwo) | /:—\—lﬂuwo)\
| ~ l
l

‘Wo W

| arg H(jw) =8(w) |
[

Fig. 3.1-1 Magnitude and l : \\*9 wo)

phase plot for a narrow- N W J S

band network. _ =
N0 (- wo) |

65
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addition, if H(jw) represents the transfer function of a physical network with a real
(not imaginary or complex) impulse response h(t), then H(—jw) = H*(jw),t which is
equivalent to

|H(—jo) = |H(jw) (3.1-1)
and

0(—w) = —0(w),

where 6(w) = arg H(jw). Equation (3.1-1) is, of course, simply the statement that the
magnitude of a physical network must be an even function of w and the phase must
be an odd function of w.

We define the low-pass equivalent transfer function H,(jw) for H(jw) as that
function whose magnitude has the same dependence on w in the vicinity of w = 0 as
|H(jw)| has in the vicinity of w = w,, and whose phase angle has the same dependence
on w in the vicinity of @ = 0 as 8(w) — 6(w,) has in the vicinity of wy. This definition
may also be expressed in the form

H,(jo) = H(jw + jwg)e ™ #“u(w + w,), (3.1-2)

where u(w + w,) is the unit step function which, in Eq. (3.1-2), has the effect of
removing the lower portion (w < 0) of H(jw). The e /*“° term removes a constant
phase angle 8(w,) from the phase of H;(jw). A plot of the magnitude and phase of
H,(jw), which correspond to the magnitude and phase of H(jw) shown in Fig. 3.1-1,
appears in Fig. 3.1-2. Note that the phase of H,(jw) is zero for w = 0.

H, (jw)

/’_\ |H.(0)| =|H(jwo)|= Hy

W ——a

arg H,(jw)=9,(w)=0(w+we) —Bwy)

Fig. 3.1-2 Magnitude and =
phase plot for H,(jw).

The transfer function H(jw) is defined as being symmetric about w, if
H(—jw) = H}(jw), or equivalently

|H(—jo) = |H(jo) (3.1-3)
and
BL((U)' = —0,(—w)

In this chapter we shall restrict our attention to symmetric narrowband networks for
two reasons. First and most important, most physical narrowband networks may

t By definition, H(jw) = j“fw h(t)e™J** dt. If the impulse response h(t) is real, then
H—jo) = [ hoe~"di = HH (o)

where H*(jw) is the complex conjugate of H(jw).
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be closely approximated by symmetric transfer functions. Second, the symmetry
condition, expressed by Eq. (3.1-3), ensures that the impulse response h,(t) of the
low-pass equivalent network is real, which is essential if H,(jw) is to be physically
realizable. If H(jw) is not symmetric about w,, the low-pass equivalent transfer
function is still defined by Eq. (3.1-2); however, it may not be associated with a
physical network and, in addition, calculations employing it may become somewhat
more involved. ‘

In addition to relating H,(jw) to H(jw), for the symmetric narrowband filter
we may obtain the inverse relationship. Specifically, with the aid of Eq. (3.1-1) we
note that

H(jo) = Hi(jo — jwo)e’®*? + H,(jw, + jw)e @) (3.1-4)

this equation, of course, represents H, (jw), with the appropriate phase angle added,
shifted up and down in frequency by an amount ,,.

To solidify our ideas on the relationship between H,(jw) and H(jw) we shall
develop low-pass equivalent networks for several physical narrowband networks.
We consider first the parallel RLC circuit shown in Fig. 3.1-3. From Section 2.1 we
recall that at resonance Z,,(jw,) is purely resistive ; hence @(w,) = 0. In addition,
we recall that with Q; = woRC > 10, which is a necessary condition for a narrow
bandwidth, Z,,(jw) is closely approximated by (cf. Eq. 2.2-9)

Z“(j(u)=#. w > 0,
W — wq

1+

where w, = l/\/ﬁ and « = 1/2RC. Consequently, with 6(w,) = 0, Eq.(3.1-2) yields

Z (jo) = ———, - (3.1-5)
el | + jo/a
o -
Wo= o=
Zl 1(]7) R J._C L L
T Q,=wyRC>10
o— *
Fig. 3.1-3 Parallel RLC O *
circuit and its low-pass
cquivalent.
- 1
Zn,(p) R T
o
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L
O Y. @ 9 O
+ +
vi() R C vo(?)
o Y $ : )
Va(P) i
H = = —woRC =10
(P) V](P) we V/E(—, Qr Wwo
R .
. K 1o
+ +
v (D) 20 v, (1)
Fig. 3.1-4 Narrowband circuit
and its low-pass equivalent. o b s}
V. (P) Ideal
LATA 48

which we recognize as the input impedance of the low-pass equivalent network also
shown in Fig. 3.1-3.

As a second example we consider the circuit shown in Fig. 3.1-4. For this
circuit the voltage transfer function H(p) is given by :

- V2(p) - w§
Vilp)  p* + 20p + w3’
where w, = 1/./LC and a = 1/2RC. A pole-zero diagram of H(p) and a sketch of

H(p)

(3.1-6)

jw

| |—a | Hjw)| — LH( /wo)l =0,
) |
= wo?

B //- w} SF = wy |

lv Wy
7 l

\

\ B=vwe? - a2 arg H(jw) l
- |

P2 [wg W ——t—

%'\—
-

Fig. 3.1-5 Pole zero diagram of H(p) and plot of |H(jw)| and arg (Hjw) vs. w.
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|H(jw)| and arg H(jw), for the case where w,/2a = woRC = Q@ > 10, are shown in
Fig. 3.1-5. When the complex poles are close to the imaginary axis (a necessary
condition for the network to have a narrow bandwidth), then H(jw) is significantly
different from zero only in the vicinity of +w,. Therefore, when graphically
evaluating H(jw) for w > 0 from the pole-zero diagram, we can closely approximate
the phasor p,, drawn from p, to the imaginary axis by

Pp, X 2woe’™? (3.1-7)

over the significant frequency range in the vicinity of w,. In addition, the phasor
from p, to a point w on the imaginary axis may be written as

Py =+ jlo— ) xa+ jlo-— w) (3.1-8)
Consequently, for @ > 0 and Qr > 10, H(jw) may be closely approximated by
SF 2, i(n/2) = i(n/2)

H(jw) = - badnd — - Q""w . (3.1-9)

- -

PoPor ega|1 + ") I e

o o
If we now note that f(w,) = —n/2 and employ Eq. (3.1-2), we obtain
: Or

= . 3.1-10
Hyo) = s (3.1-10)

A non-unique low-pass equivalent network having this transfer function is shown
also in Fig. 3.1-4. The ideal transformer is required to provide the voltage amplifica-
tion of Qr at w = 0, which is the amplification of the bandpass network at w = w,.
The bandwidth BW of H(jw) is 2o, which is exactly twice the bandwidth of H,(jw).

o o o > . 7o) . 4 O

b + f
V(1) g&ilt) <R JL ::C va(1) &0 §R %L Te- Vi)

o — - T—°

wy = 'ZIF Q;=woRC>10 ’

O——0 +—0

2 +

v, (1) 5¢ 8 Vull) §R S¢ vy (1)

o— . —de * +——o

Fig. 3.1-6 Model for two-stage IF strip and its low-‘pass equivalent.
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If two or more symmetric noninteracting narrowband fiiters, each of which has a
center frequency of wg, are connected in cascade, then the low-pass equivalent of
the composite filter is obtained by cascading the low-pass equivalents of the individual
filters. Figure 3.1-6 illustrates the low-pass equivalent network comprising two
cascaded, noninteracting parallel RLC circuits.

3.2 IMPULSE AND STEP RESPONSE

With the aid of the results of Section 3.1 we can represent the impulse and step
response for a symmetric narrowband filter as a function of the impulse response
h.(t) of the equivalent low-pass filter. Such a representation permits one to analyze
the much simpler low-pass equivalent filter to obtain corresponding results for the
bandpass filter.

If we designate h(t) as the impulse response of the narrowband filter whose
transfer function is given by H(jw), then h(t) is the inverse Fourier transform of
H(jw), that is,

h(t) = —2—17; fw H(jw)e’ dw. (3.2-1)

With the aid of Eq. (3.1-4) we can express H(jw) in terms of its low-pass equivalent
H,(jw) to obtain

h(t) = 2i f H,(jo — jwo)e?®@eit d
n

) B . )
+ — J H,(jwy + jw)e ™ #@eiot 4o, (3.2-2)
2n ). o

If, in addition, we substitute @’ = w — w, in the first integral and o’ = wy + w in
the second integral of Eq. (3.2--2), the expression for h(t) simplifies to the desired form

o
h(t) = {e"“"” Tolwoll 4 g~ Jlwor ”’"”"”} L J H,(jo)e'*" dof
2n)_,

= 2h;(t) cos [wot + BHwy)], (3.2-3)

which directly relates h(r) to h(t), the impulse~response of the low-pass equivalent
circuit.

As an application of this result, let us evaluate the impulse response z,(t) of the
high-Q parallel RLC circuit shown in Fig. 3.1-3. For this circuit 6(w,) = 0. The
impulse response of the low-pass equivalent circuit z,,,(¢) (also shown in Fig. 3.1-3)
is known to be

1
Zy,(0) = Ee'“’u(t), (3.24)
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(1)

Envelope - = e *u(r)

1
C

-

Fig. 3.2-1 Sketch of z(f)
for a parallel RLC circuit.

Carrier - cos wyl

where « = 1/2RC. Consequently, by employing Eq. (3.2-3) we obtain
1
z4() = Ee‘“’(cos wotu(t), (3.2-5)

which is exactly the expression obtained for z,(t) in Eq. (2.2-12) with more conven-
tional techniques. A sketch of z,,(¢) is shown in Fig. 3.2-1.

To obtain the step response of a(t) for a narrowband filter in terms of its low-pass
equivalent circuit, we first evaluate the step response in terms of H(jw), then express
H(jw) in terms of H,(jw), and finally find a(t) in terms of h,(t).

The step response a(t) for the narrowband filter can be written in the form

a(t) = Elr_zfl H(jw)[jLw + né(w)]ej“” dw. (3.2-6)

where (1/jw) + nd(w)is the Fourier transform of the unit step. Since for the networks
under consideration the response at dc is always assumed to be zero, it follows that
H(0) = 0 and therefore the d(w)-term may be omitted from Eq. (3.2-6).

We now express H(jw) in terms of H,(jw) and restrict our attention to regions
close enouvgh to the complex poles so that near the upper complex pole jw may be
replaced by jw, and near the lower complex pole jo&» may be replaced by —jw,.
After some rearrangement, one obtains the step response in terms of the product of
the impulse response of the low-pass equivalent circuit and a sine wave at the center
frequency of the narrowband circuit ; that is,

a(r) = +2‘th sin [wot + O(wo)]. (3.2-7).
0

Evaluating Eq. (3.2-7) for a high-Q parallel RLC circuit, we obtain

1 —at .
a(t) = 2;02;9 (sin wet)ult),

where w, = 1/\/17' and « = 1/2RC.
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Physically what this means is that driving the tuned circuit with a step function
causes-it.to “‘ring” at its resonant frequency. Since there is no continuing supply of
energy at this resonant frequency, the “‘ringing” decays with time. The higher the
Q of the circuit, the more cycles it takes for the decay to fall to any given percentage
of the original level.

3.3 NARROWBAND NETWORKS WITH MODULATED INPUTS

In this section we shall apply an amplitude-modulated signal of the form s{t) =
(1) cos wyt, shown in Fig. 3.3-1, to the symmetric narrowband filter and demonstrate
that the filter output is of the form

= [g(t) * hy ()] cos [wet + B(w,)].

where * denotes convolution. This result is quite significant, since it simplifies the
problem of calculating the response of a bandpass filter excited by an AM wave to
the problem of calculating the response of the equivalent low-pass filter excited by
the envelope waveform g(t). The resultant expression provides the modulation for
the output carrier cos [wot + 8(wy)).

To begin our development we define G(w) as the Fourier transform of g(t) and
assume that |G(w) has some form similar to that shown in Fig. 3.3-2. With this
definition of G(w) and with the aid of the “‘shifting theorem,” the Fourier transform of

t), . )
si{t) = ?(6""0’ + e /@0
takes the form
G(w + w,) N G(w — wo)
2 2 ’
which is also shown in Fig. 3.3-2. We assume throughout this analysis that the two

terms in the expression for Sw) do not overlap. This assumption requires that the
highest-frequency component w,, of g(t) be lower than the carrier frequency w,.

Silw) =

s(1)=g(t) cos w

___——Upper envelope =g(?)

lﬁ { wﬂd\vﬂv\uf

Lower envelope = — g(1)

Carrier = cos wy!

Fig. 3.3-1 Typical plot of amplitude-modulated waveform.
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[G(w)|
w—-e
| S| I
| | Wo + W
Fig. 3.3-2 Plot of |G(w)| /\.[_/\ Wg =W, /\_/\
and |S{w) vs. 0. N ] /
|—~ Wy ‘w(, P

This condition is almost always satisfied in practice, since for most AM systems w,,
is required to be several orders of magnitude smaller than w, because of the physical
limitations of the AM modulator and demodulator.

For the condition w, » w,,, we see that the spectrum of s,(t) occupies a narrow
band of frequencies centered on the carrier frequency w,. This property permits
frequency division multiplexing (FDM), i.e., the independent combination of many
AM signals within a single channel. This is accomplished by choosing a distinct
carrier frequency for each signal in such a fashion that none of the signal spectra
overlap in the frequency domain. To extract a desired signal at the receiving end of
the channel, one need only pass the composite signal through a narrowband filter ;
the filter passes the signal of interest and attenuates all others.

The filter capable of passing the desired AM signal centered at w, would, of
course, have the form shown in Fig. 3.1-1. With s(t) applied to this filter, whose
transfer function is H(jw), the output signal s,(t) may be written in the form

sot) = F “[H(jw)S{w)], (3.3-1)

where # ~! indicates the inverse Fourier transform operation. With the aid of
Eq. (3.1-4), which relates H(jw) to its low-pass equivalent, the expression for s,(t)
may be rewritten as

Glw + wy) N Glw - wo):|}

sty = F 7! {[HL(jw _jwo)eje(wO) + H,(jw, +jw)€’_je(w°)][ 5 7

ejo(wo) — j8two)
——F 1[HL(jw — jowo)Glw — wy)] +

F HH, (jo + jog)Glw + w)].
(3.3-2)

thation (3.3-2) makes use of the fact that the upper portion of the spectrum of
S{w) does not overlap the lower portion of the spectrum of H(jw) and vice versa.
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1 cos wgt u(t)

L 2 O
l 4
1 cos wyt u(t) TC v, (1)

Tu(1)

Hhu(t) % 2C

Fig. 3.3-3 Parallel RLC circuit with AM input.

If the inverse shifting theorem is now employed, Eq. (3.3-2) takes the desired form
@190t piea) | o= oot = jBe0)
2
= [g(t) * hy(t)] cos [wet + Blwy)). (3.3-3)

S{t) = F 7 H(jo)G(w)]

Note carefully that # '[H,(jw)G(w)] = g(t) * h,(t) is simply a shorthand
mathematical expression, which we refer to as the “‘convolution of h,(t) with g(t).”
Although this convolution can be determined with the aid of the convolution integral,
it 1s in general obtained in a more straightforward fashion as the output of the
network whose impulse response is 4, (1) and whose input signal is g(t), that is, as the
output of the low-pass equivalent network excited by g(1). A few examples should
clarify this point.

As a first example, let us evaluate the voltage across a high-Qy parallel RLC
circuit in which a current of the form I cos wgt is applied at t = 0. The narrowband
network shown in Fig. 3.3-3 is being excited by an AM wave with an envelope
g(t) = Tu(t); therefore, Eq. (3.3-3) may be employed to determine v,(t). As was
pointed out above, g(t) * h.(t) = v,,(t) is the output of the low-pass equivalent of the
parallel RLC circuit with a current Ju(t) applied at the input. The step response of
the low-pass equivalent circuit is readily found to be

o, (t) = IR(1 — ™ ™)u(t);
and since 8(w,) = 0, Eq. (3.3-3) (where a = 1/2RC and w, = 1/,/LC) yields
v(t) = IR(1 — e™ ™) cos w,tult). (3.34)
A sketch of v,, (1) and v,(r) is given in Fig 3.3-4. We observe that the steady-state
value of v,(t) is the product of the input current I cos wot and the resistance R of the
parallel RLC circuit. This is an expected result because at the resonant frequency
Z1(jwo) = R. In addition, we observe that v,(t) rises toward its steady-state value

with an envelope governed by a single time constant © = 1/x; thus for t > 41, v (t)
has attained an amplitude within 2%, of its steady-state value.
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vo, (D)

—— IR

v,(t) Envelope : IR(1 -¢ *)u(r)

Fig. 3.34 Output waveforms
for the circuits of Fig. 3.3-3.

It is apparent that the closer the complex poles of the parallel RLC circuit lie
to the imaginary axis in the complex p-plane, the longer it takes the output waveform
to reach steady state. Consequently, networks with very narrow bandwidths
(¢ « wyg) are capable of transmitting without distortion only input AM waves with
slowly varying envelopes, or equivalently, AM waves whose spectra are contained
within the passband of the narrowband filter. An alternative interpretation is that
an AM wave is transmitted without distortion if the spectrum of g(¢) lies within the
passband of H,(jw).

As a second example, let us apply a periodically gated carrier of frequency w,
to a high-Q parallel RLC circuit as shown in Fig. 3.3--5. The input current may be

v, (1)

Vo, (1)
=L |
I i | =
-n |, 3N
4 4 4

Fig. 3.3-5 Parallel RLC circuit driven by gated carrier.
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represented as

ii(t) = 18(t) cos wyt,
where S(1) is a periodic switching function of period T, that has a value of either
I or 0. With this representation it is apparent that i(r) is an AM wave and therefore

that
(1) = v,, (1) cos [wot + O(wy)],

where v, (t) = IS(t) * h,(t) is the output of the low-pass equivalent of the parallel
RLC circuit driven by i;, (1) = IS(t). Figure 3.3-5 also illustrates the low-pass
equivalent circuit for determining v, (f).

If we assume that T;/2 > 41 = 4/« (i.e., that the circuit reaches steady state in
each interval of duration T,/2), then we can write v,,(t) in the form

Vo (t) = IR[1 — e *¢*Tu]  _T /4 << T,/4
= [Re~*t~Tu/4), T,/4 <t < 3T,/4,

= IR[1 — e =3Tud]  3Ty/4 <t < ST, /4, (3.3-5)

and in turn v,(t) = v,,(t) cos wy. A sketch of v, (t) and v (t) appears in Fig. 3.3-5 to
the right of the corresponding circuits. Note that an output exists for the parallel RLC
circuit during the intervals of time during which there is no input. This phenomenon is
clearly the result of the. oscillatory decay of a high-Q circuit which has acquired
energy from an input signal during some previous interval of time.

As a third example, let us apply a sinusoidally modulated AM signal of the form

5{t) = A[l + mcos w,t] cos wyt

to a general symmetric narrowband network whose passband is centered about wyg.
Figure 3.3-6 illustrates the waveform of s/t). The parameter m for this form of AM

si(t)

Envelope=A(1+m cos w,,()

o

’ “‘l Il' 24(1+m)=C

g
SN

Envelope = ~A (1+m cos w,t)

Carrier =cos wgy!

Fig. 3.3 6 Plot of sinusoidally modulated AM wave.
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wave is defined as the modulation index, and A is defined as the unmodulated carrier

amplitude. The modulation index m may be related to the waveform s,t) by the
relationship

n_C—B

" C+FH

where C is the maximum peak-to-peak value of si(f) and B is the minimum peak-to-

peak value of s(t). If B =0, then m = 1 and s4(¢) is said to be 100% modulated.
In general the percent modulation is given by

% modulation = m x 100, (3.3-7)

With s,(t) applied to the symmetric narrowband network with transfer function
H(jw), the output of the network s,(t) is given by

s,(t) = [A(l + m cos w,,t) * h(t)] cos [wet + Owy)]. (3.3-8)

(3.3-6)

However,
Ax*h (1) = AH(0)
and
Am cos wpt * hy(t) = Am|H,(jw,,)| cos [w,t + 0 (w,)],

where H,(jw) is the low-pass equivalent transfer function of H(jw) and 6,(w) =
arg H;(jw). Therefore, s,(t) takes the form of a sinusoidally modulated AM signal
given by

miH, (jw,,)l

sy(t) = AH,(0) {1 + H.0)

cos [w,t + BL(wm)]} cos [wot + B(wy)]. (3.3-9)

We note that the modulation index m'(w,,) of s,(t) [obtained with the aid of Eq.
(3.3-6)] is given by

|H (jo)
H (0)

m'(w,,) = m

and that the output modulation is shifted in phase by 6,(w,,).
Example 3.3-1 For the circuit shown in Fig. 3.3-7, determine an expression for v,(t).

Solution. For the parallel RLC circuit,

1
w, = —— = 107 rad/sec and 07 = woRC = 10.

JLC
Since the circuit is symmetric about w, we can obtain the envelope v,,(t) of v,(t) by

passing (SmA)(1 + cos 5 x 10°t) through the low-pass equivalent network, as
shown in Fig. 3.3-8. The component of v,, due to the S mA constant input is simply
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-0
+
. P
i(1) D 10 uH =~ 1000 pF glkﬂ v, (1)
Figure 3.3-7 ’ S ; =)
i) =5mA [l + cos S X 10t) cos 10 ¢
—
SmA [1 + cos5 x 10%]6) == 2000 pF 1kQ v (n)
. O
Figure 3.3-8 a=5 x 10°rad/s

SmA x 1kQ = 5V, whereas the component of v,, due to the (SmA)cos S x 10%¢
of input is [(5 V)/\/§] cos (5 x 10°t — m/4). The attenuation of 1/\/2 and the phase
shift of —=/4 are both due to the fact that the input cosinusoid lies exactly at the
—3dB point of the low-pass filter. Combining the two components of ¢, () and
multiplying, by cos wot, we finally obtain

v,(1) = (5 V)[l + L cos (5 x 10°t — g” cos 1071,

NG

This expression for v,(t) could also have been obtained by direct substitution into
Eq. (3.3-9) of 4 = 5mA, H;(0) = 1 kQ, H,(jw,) = 1kQ/AL + j) = (l/\/i)e_j"‘/“’,
and O(wy) = 0.

Another example exploring the measurement of high-Q filters appears in the
_appendix at the end of the chapter.

3.4 NARROWBAND NETWORKS WITH PERICDIC INPUTS

One of the most efficient methods of amplifying a high-level sinusoidal signal is to
convert the signal into a periodic train of narrow pulses in-a nonlinear amiplifier and
then to pass these pulses through a narrowband filter to reconstruct the original
sinusoid. In addition, one of the most fundamental methods of generating an
amplitude-modulated wave is to control the amplitude of a periodic waveform
(usually a square wave or a train of narrow pulses) and then to pass the wave through
a narrowband filter to obtain a sinusoidal carrier. Since both of the above techniques
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employ a narrowband filter with a periodic input, we shall determine the output s,(?)
of such a filter centered at w, when the input signal is of the form

sit) = glt)s, (),

where s,(t) = s,(t + T) is periodic with period T = 2n/w, and g(t) is the low-
frequency signal which controls the envelope of s,(t). For high-level amplifier, g(t)
reduces to a constant.

Since s,(t) is periodic, it may be expanded in a Fourier series of the form

L
20

splt) = ao + Y. a,cosswyt + b, sin nwt
n=1

=ay + y, C,cos(nwet + 0,), (3.4-1)
n=1
where C, = \/E:r—b? and 0, = —tan~!(b,/a,). The input signal to the filter there-
fore takes the form
s{t) = apg(t) + Z C,g(t) cos (nwyt + 0,), (3.4-2)
n=1
which is an infinite superposition of AM waves, each centered at a harmonic w.
If the maximum frequency component w,, of g(t) is much less than w, (which is
almost true in practice), then the spectrum of each AM wave occupies a narrow band
of frequencies of 2w,, about its center frequency as shown in Fig. 3.4-1. If s{t) is now
passed through a narrowband filter for which [H(jnw,)| = Oforn = 0,2,3,4,.. ., then
the output s,(t) of the filter can be closely approximated by the response of the filter
to only the fundamental (n = 1) component of s(t); that is,

s.(t) = [Cg(t) cos (ot + 8,)] * h), (3.4-3)

where h(t) is the impulse response of the narrowband filter. If the filter is symmetric
about wy, then s,(t), with the aid of Eq. (3.3-3), can be written in the equivalent form

so(t) = [C,8(t) * hy(t)] cos [wet + 0, + Owo)], (3.4-4)
where h,(t) is the impulse response of the low-pass equivalent filter and 8(w) is the

phase angle of the narrowband filter. For the case where g(t) is a constant or where

|S(w)]

[H( jw)|
( \

S N N

Fig. 3.4-1 Typical spectrum of s{s).
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H,(jw) ~ H,(0) over the band of frequencies occupied by g(r), [i.e., where the low-
pass equivalent filter passes g(t) undistorted], the filter output simplifies to

5(t) = C H(0)g(r) cos [wot + 0, + O(wy)]
= C\[H(jwo)lg(t) cos [wot + 0, + O(w,)], (34-5)

which is in the expected form of an AM signal with envelope g(t). The constant C -
is, of course, the fundamental component of the original periodic waveform and
|H(jwo)l = H;(0) is the transfer function of the filter in the vicinity of the fundamental
frequency.

As a specific example of the above procedure, let us evaluate the output of the
high-Q parallel RLC circuit shown in Fig. 3.4-2, which is driven by a periodic train
of current impulses applied at ¢t = 0. The input current ift) has the form

it) = q }: 8t — kT), (3.4-6)
k=0

where q is the impulse strength (in coulombs) and T = 2n/w, is the spacing between
impulses. If we rewrite i(t) in the equivalent form

(1) = qu(t)s,(t), (3.4-7)

where 5,(t) = Y'> __8(t — kT), it becomes apparent that the input current is an
envelope-modulated periodic waveform.

To begin our analysis, we expand the periodic train of impulses s,(t) in a Fourier
series to obtain

)

2 a
sp(t) = iT + T "; cos nwgt (3.4-8)
and in turn
ift) = Lou(t) + 2Iqu(t) Y. cosnwt, (3.4-9)

n=1
where I, = q/T is the average value of ift) for t > 0. If
|Z,(jnwe) = 0 for n=0,23,4,...,

»,(t) Arca q . ‘
T T r ",(') = R
{ —a
1
".(')=II“(I)E_G8\T;’¢T)] wo= " 0, >10, T:&—';

s(1)
Fig. 3.4-2 Parallel RLC circuit driven by impulse train.
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or equivalently
|Z 1 (jnwo)l _ |Z 1 (jnwo)
[Z 1 (jwo)l R

then we need only retain the fundamental component of i) to obtain an expression
for v,(t). Physically, the components of i(t) in the vicinity of nw, (n > 2) would be
effectively shorted to ground through the capacitor C and thus would not contribute
to t,(t), while the component of i) in the vicinity of w = 0 would be effectively
shorted to ground through the inductor L and thus would not contribute to v,(t).
With the assumption that only the fundamental component of ift) contributes to
v,(t) we may write

<1 for n#l,

v (t) = [21u(t) cos wet] * z,,(t)
= [21qu(t) * z;,,(t)] cos wyt
= 2I,R(1 — e™ *)u(t) cos wet [cf. Eq. (3.3-4)]. (3.3-10)
