
An Extremely Fast ZIV-Lempel
Data Compression Algorithm

Ross N. Williams

Renaissance Software
GPO Box 171

Adelaide 5001, Australia

ross@spam . ua. oz. au

Abstract

A new, simple, extremely fast, locally adaptive data compression algo-
rithm of the LZ77 class is presented. The algorithm, called LZRW1,
almost halves the size of text files, uses 16K of memory, and requires
about 13 machine instructions to compress and about 4 machine in-
structions to decompress each byte. This results in speeds of about
77K and 250K bytes per second on a one MIPS machine. The algo-
rithm runs in linear time and has a good worst case running time. It
adapts quickly and has a negligible initialization overhead, making it
fast and efficient for small blocks of data as well as large ones.

1 Introduction

Text data compression techniques can be partitioned into ad hoc techniques, dictio-
nary techniques, and statistical techniques (see reviews in [Williams90][Bell9Oa]
[Storer88]). Of these, the class of adaptive dictionary algorithms pioneered by
Ziv and Lempel[Ziv77][Ziv78] provides the most practical trade off between flex-
ibility, compression, and speed. Most modern text data compression programs,
including the popular Unix compress utility (derived from [Welch84]), use Ziv
and Lempel (LZ) algorithms.

Although current LZ algorithms are generally fast, they are not always fast
enough for embedded real-time systems with tight throughput requirements. In
such systems time is the important constraint and designers of compression al-
gorithms must concentrate primarily on speed, with compression taking second

362 TH0373-1/91/0000/0362/$01 .OO 0 1991 IEEE

363

place. This paper presents a new LZ variant called LZRWl that was designed
with speed as the primary objective. The algorithm takes only a few instructions
to process each byte, but still yields useful compression. LZRWl is based on the
A1 algorithm by Fiala and Greene[FialaBS] which itself is a member of the class
of LZ77 algorithms[Ziv77].

2 The LZRW1 Algorithm

LZRWl uses the single pass literal/copy mechanism of [LZ77]. At each step, the
next few bytes of input are transmitted either directly as a string or as a pointer
to the text already transmitted (the history). Figure 1 shows how a particular
message would be divided into literal items and copy items if the minimum
length of an uncompressed copy item were three bytes. Compression is achieved
by representing as much of the message using copy items, resorting to literal items
only when a match of three or more bytes cannot be found.

A walrus i n S p a i n - is a walrus i n vain -
~ . - ~ ~ *- -.. _-..-lx..-A-a" (offset=6, ~ (offset=21, (offset=20,

0 length=3) . length=l 1) length=3)
I ..,, --..,- *
...

.. :

,.....
.@

,,,- ~ , , ~

LZ77 class algorithms (of which LZRWl is a member) achieve com-
pression by converting the text into a sequence of items, each of which
can be either a literal item or a copy item. Literal items consist of the
text they represent. Copy items consist of an offset and a pointer that
together point to a substring of the text already transmitted.

Figure 1: T h e literal/copy compression technique.

Figure 2 shows how LZRWl arranges the items into compressed data. A
literal item contains a single byte that is coded directly. A copy item contains two
bytes that specify the length[3,16] and oEset[1,4095] of a string appearing in the
most recent 4095 bytes of the history (the Lempel). Control bits indicate whether
items are literal or copy items, and are clustered into groups of 16 to preserve byte
alignment.

Figure 3 gives a snapshot of the LZRWl compression algorithm in execution.
The algorithm's data structures, which form its source model, consist of a few

364

16-bit
control

word 16 items

Length=b+l Length range is [3,16]
Offsel=256'a+c Offset range is [I ,4095)

This figure gives LZRWl's compressed data format. LZRWl uses a
single bit to determine whether each item is a literal item or a copy
item. To preserve byte alignment, items are clustered into '16-item
groups preceded by a 16-bit control word.

Figure 2: LZRWl's compressed data format.

scalar variables, the input block, and a hash table of 4096 pointers. The hash
table maps any three byte key to a single pointer that can point anywhere in
memory, but which is likely to point to a matching key somewhere in the Lempel.
At each step the hash table is used to try to find a match in the Lempel for
the first three or more bytes of the Ziv (the next 16 bytes to be coded) with a
match resulting in the generation of a copy item. Because the algorithm checks
all pointers that it fetches from the hash table, the hash table does not need to
be initialized. LZRWl updates its hash table after every item rather than every
byte, making the hash table update rate inversely proportional to compression.
This policy also exploits the phrase structure[Langdon84] present in most data.

Decompression is extremely simple and fast. The decompressor processes one
item at a time, translating it into one or more bytes which are appended to the
end of the output. If the item is a literal item, its single literal byte is appended.
If the item is a copy item, the length and offset fields are used to locate and copy
a string already in the output block. Control bits must be buffered.

LZRWl's hash function is constructed in accordance with the advice in
[Knuth81] and seems to be near optimal. A recently published hash function

365

that used a lookup table[PearsonQO] was tried, but yielded identical performance.
LZRWl’s hash table provides at most the most recent Lempel match of a key.
Bell[Bell9Ob] discusses other LZ77 search techniques.

A precise specification of the LZRWl text data compression algorithm is given
in Figures 4-6 which provide a turnkey implementation in the C programming
language[Kernighan88].

3 Experiments

To test its performance, LZRWl was implemented in high and low level lan-
guages and applied to the standard corpus of test files described in Appendix €3
of [BellSOa].

Figure 7 gives the results of running the C implementation of LZRWl of Fig-
ures 4-6 against a similar implementation of the A1 algorithm and against the
Unix compress dtility (LZC) on a Pyramid 9820 computer running Unix. LZRWl
compresses about 10% worse than LZC, but runs four times faster. LZRWl com-
presses about 4.3% worse than the A1 algorithm, but runs ten times faster. This
indicates that Al’s exhaustive search of the Lempel and its use of a two-byte
minimum copy length does not greatly improve. its compression.

Figure 8 gives the performance of an hand-optimized 68000 assembly lan-
guage implementation of LZRWl running it on an 8MHz Macintosh-SE computer.
LZRWl achieves reasonable compression while requiring an average of just thir-
teen machine instructions to compress and four machine instructions to decompress
each byte. The performance of LZRWl on the files zeros and noise demonstrates
the stability of the algorithm. For the 68000 runs, each file was divided into 16K
blocks each of which was compressed independently. This impaired compression
by at most 2% absolute. This fact coupled with LZRWl’s negligible initialization
cost makes LZRWl ideal for small blocks of data.

4 Conclusion

Use of a simple hash table mechanism along with ruthless elimination of house-
keeping has led to the extremely fast LZRWl text compression algorithm that
requires about 13 machine instructions to compress each byte and about 4 ma-
chine instructions to decompress each byte. This results in speeds of about 77K
and 250K per second on a one MIP machine. LZRWl compresses ten percent
worse than the popular Unix compress utility, but runs four times faster, making
it possibly the fastest adaptive text compression algorithm yet.

366

LZRWl Data Compression Algorithm

1. Hash first three bytes of Ziv.
2. Look up hash table yielding pointer p.
3. Replace table entry with pointer to Ziv.
4. If p points into Lempel, and string

matches at least first three bytes
Ziv then code as copy item
else code as literal item.

5. Shift LempeVZiv bounda

__________.____-____--------- - - -

t" Lempel

History P-S
i

Input block
(src-len bytes long)

This figure gives a snapshot of the LZRWl compression algorithm in
execution. The horizontal bar represents the input block (in memory)
which is used directly as a read-only data structure. The hash table
maps three-byte keys to pointers that can point anywhere in memory,
but which are likely to point to a recent occurrence of the key in the
input already scanned (the history). At each step the hash table is used
to map the first three bytes of the Ziv (defined to be the first sixteen
bytes of the remaining part of message) to such a pointer. To keep the
hash table up to date, the hash table entry from which the pointer was
just fetched is replaced by a pointer to the Ziv. If the pointer fetched
points to one of the most recent 4095 bytes of the history (the Lempel)
and points to a match with the Ziv of at least three bytes, a copy
item is constructed representing the bytes matched, otherwise a literal
item is constructed representing the first byte in the Ziv. Because the
algorithm checks the pointers that it obtains from the hash table, the
hash table need not be initialized.

Figure 3: The LZRWl algorithm in execution.

367

void lzrai-compress (p-src-f irst ,src-len,p-dst-f irst.p-dst-len)
/* Input : Specify input block using p-arc-first and arc-len. */
/* Input : Point p-dst-first to the start of the output zone (0 2) . */
/* Input */
/* Input : Input block and output zone must not overlap. */
/* Output */
/* Output : Output block in Mem[p_dst_first..p-dst_first+*p-dst_len-ll. */
/* Output : May write in OZ=Mem~p~dst~first..p~d~t~fir~ttsrc~len+266-11.*/
/* Output : Upon completion guaranteed *p_dst_len<=src_len+FLIG_BTTES. */
UBYTE *p-src_first,*p_dst-first; ULOBG src-len,*p-dst-len;

*/
#define ITEMMAX 16 */
CUBYTE *p-src=p_src-first,*p_dst=p_dst=p-dstfirst;

: Point p-dst-len to a ULOBG to receive the output length.

: Length of output block written to *p-dst-len.

#define PS *p++!=*s++ /* Body of inner unrolled matching loop.
/* Maximum number of bytes in an expanded item.

UBYTE *p_src_post=p_src_first+src_len,*p_dst-post~-dst-first+src_len;
UBYTE *p~src~maxl=p~src~post-ITEMMAX.*p~src~marl6=p~src~post-i6*ITEMlUX;
UBYTE *hash[4096l,*p-control; W O R D control=O,control_bits=O;
*p-dst=FLAG-COMPRESS; p-dst+=FLAG-BYTES; p-control=p-dst; p-dst+=l;
while (TRUE)
{UBYTE *p.*s; W O R D unroll=l6.len,index; ULOBG offset;
if (p-dst>p-dst-post) goto overrun;
if (p-src>p-src-marl6)
€unroll=i;
if (p-src>p-src-maxi)
cif (p-src==p-src-post) break; goto literal;))

begin-unrolled-loop:
index=~~40543*~~~~p~src~01~~4~~p~arcCf)<<4)~p~src~21))>>4) & OxFFF;
p=hash[indexl; hashbdexl =s=p-src; ofiset=s-p;
if (offset>4096 I I p<p-src-first I I offset==O I I PS I I PS I I PSI

{literal: *p-dst++=*p-src++; control>>=l; control-bits++;)
else
CPS I I PS I I PS I I PS I I PS I 1 PS I I PS I1
PS I I PS I I PS I I PS I I PS I 1 Ps I I stt; len=s-p-src-i;
*p_dst++=((offset&OxFOO)>>4)+(len-l); *p-dst++=offsetkOxFF;
p-src+=len; control=(control>>I)~Ox8000; control-bits++;)

end-unrolled-loop: if (--unroll) goto begin-unrolled-loop;
if (control-bits==l6)
C*p-control=control&OxFF; * (p_control+l)=control>>8;
p-control=p-dst; p_dst+=2; control=control-bits=O;)

)
control>>=i6-control~bits;
*p-control++=control&OxFF; *p_control++=contro1>>8;
if (p-control==p-dst) p_dst-=2;
*p-dst-len=p-dst-p-dst-f irst ;
return;
overrun: fast_copy(p_src_first,p-dst_iirsttF~G-BYTES,src-len);

*p_dst-first=FLAG-COPY; *p_dst-len=src_len+FLAG-BYTES;
)

Figure 4: The LZRWl compression algorithm.

368

#define UBYTE unsigned char /* Unsigned byte (1 byte) */
#define UWORD unsigned int /* Unsigned word (2 bytes) */
#define ULOW unsigned long /* Unsigned longword (4 bytes) */
#define FLAG-BYTES 4 /* Number of bytes used by copy flag. */
#define FLAG-COMPRESS 0 /* Signals that compression occurred. */
#define FLAG-COPY 1 /* Signals that a copyover occurred. */

*/
UBYTE *p-src,*p-dst; {while (len--) *p-dsttt=*p-srctt ;)
void fast-copy(p-src,p-dst,len) /* Fast copy routine.

Figure 5: Definitions used by LZRWl code.

void lzrwl_decompress(p~src_first,src~len,p~dst~first,p~dst~len)
/* Input : Specify input block using p-src-first and src-len. */
/* Input : Point p-dst-first to the start of the output zone. */
/* Input : Point p-dst-len to a ULONG to receive the output length. */
/* Input : Input block and output zone must not overlap. User knows */
/* Input : upperbound on output block length from earlier compression. */
/* Input : In any case, maximum expansion possible is eight times. */

/* Output : Output block in MemCp_dst-first..p_dst_firstt*p-~st-len-ll. */
/* Output : Writes only in ~emCp-dst-first..p_dst-firstt*p-dst-len-ll. */
UBYTE *p-src-first, *p-dst-first; ULONG src-len, *p-dst-len;
{UWORD controlbits=O, control;

/* Output : Length of output block written to *p-dst-len. */

UBYTE *p-src=p-src-firsttnAG-BYTES, *p-dst=p-dst-first,

if (*p-src-first==FLAG-COPY)
*p-src-post=p-src-firsttsrc-len;

{fast-copy(p-src-f irsttFLAG-BYTES ,p-dst-f irst , src-lan-FLAG-BYTES) ;
*p-dst-len=src-len-FLAG-BYTES; return;)

while (p-src! =p-src-post)
{if (controlbits==O)

{control=*p-src++; controll=(*p-srctt)<<S; controlbits=l6;)

{UWORD offset,len; UBYTE *p;
if (controlkl)

offset=(*p-src&OxFO)<<4; len=lt(*p_srct+kOxF);
offset+=*p-srct+kOxFF; p=p-dst-offset;
while (len--) *p-dsttt=*ptt;)

*p-dsttt=*p-srctt;
else

control>>=l; controlbits--;
>

*p-dst-len=p-dst-p-dst-first;
>

Figure 6: The LZRWl decompression algorithm.

369

%Rem
File K
bib 109
bookl 751
book2 597
geo 100
news 368
objl 21
obj2 241
paper1 52
paper2 80
pic 501
progc 39
progl 70

trans 91
Averane 219

ProgP 48

K/Sec

53.8 41.8 59.4
61.6 43.2 67.9
52.5 41.1 59.0
94.0 76.0 84.4
56.8 48.3 61.3
60.8 65.3 61.7
47.0 52.1 51.3
51.5 47.2 57.8
54.0 44.0 61.0

*23.3 12.1 25.6
49.1 48.3 54.6
35.5 37.9 43.7
35.4 38.9 42.8
40.8 40.8 46.1
51.2 45.5 55.5

27 435
21 419
24 435
13 270
27 433
4 350

23 482
26 433
23 401
37 604
29 387
20 466
19 438
25 457
22 429

58 94
46 90
49 92
48 74
44 87
53 75
41 86
58 91
64 94

108 148
55 90
65 103
63 98
61 96
58 94

213 388
186 368
215 375
167 313
210 392
191 420
225 423
226 371
206 382
346 506
242 387
241 412
241 344
241 436
224 394

This table compares the performance of the A1 (a simple LZ77 class al-
gorithm by Fiala and Greene), LZC (U$x compress which is based on
the LZW algorithm), and LZRWl (the topic of this paper) algorithms
coded in C and running on a Pyramid 9820 computer. The implemen-
tation of A1 used a hash table indexing into a bounded buffer array
holding linked lists of hash matches. A standard corpus of files was used
for the test. The %Rem columns give compression as a percentage re-
maining. The I</Sec columns give the compression and decompression
speeds in kilobytes (1024) per second. Decompression speeds are given
relative to o u t p u t (uncompressed) bytes. Speeds were calculated from
the u s e r time field given by an application of the unix t i m e command
to a block of ten consecutive compression runs. (*Note: The A1 algo-
rithm took so long to run on the file p i c that it was terminated and
re-run, for the file p i c only, with an upperbound of ten on its search). A
comparison of LZRWl to its ancestor algorithm A1 shows that, while
LZRWl compresses about 4.3% worse than the A1 algorithm, LZRWl
runs ten times faster. LZRWl compresses about 10% absolute worse
than LZW, but runs four times faster. LZRWl compresses relatively
poorly on English text files (e.g. bookl), but compresses relatively
well on non-English text files such as program texts and object files for
which it betters LZW on both compression and speed.

Figure 7: Performance of algorithms on a Pyramid 9820.

370

zeros 78 5
noise 78 5

File
bib
book1
book2
geo
news
objl
ob j2
paper1
paper2
pic
progc

ProgP
progl

13.4 136 205 4.1 2.7
100.0 23 1178 24.4 0.25

-
K

109
751
597
100
368
21

241
52
80

501
39
70
48

- /16K
7

47
38

7
24
2

16
4
6

32
3
5
4

trans 91 6
Average 219 14

%Rem
61.0
69.5
60.5
85.6
63.0
61.9
52.5
59.5
62.4
25.8
55.7
44.7
44.2
47.9
56.7

K/Sec
43 147
40 132
44 142
31 131
41 150
41 161
49 156
45 143
44 138
87 187
47 149
58 157
58 158
53 162
49 151

Ins/Byte
13.4 4.1
14.7 4.6
13.1 4.3
18.5 4.7
14.0 4.0
14.2 3.7
11.8 3.8
12.9 4.2
13.3 4.4
6.5 3.1

12.3 4.0
10.0 3.8
9.9 3.7

10.9 3.7
12.5 4.0

37 1

5 References

[BellSOa] Bell T.C., Cleary J.G., Witten I.H., “Text Compression”, Prentice Hall,
Englewood Cliffs, New Jersey, 1990.

[BellSOb] Bell T.C., “Longest Match String Searching For Ziv-Lempel Compres-
sion”, Department of Computer Science, University of Canterbury, Christchurch,
New Zealand.

[Fiala88] Fiala E.R., Greene D.H., “Data Compression with Finite Windows”,
Communications of the ACM, Vol. 32, No. 4, pp. 490-505.

[Kernighan88] Kernighan B.W., Ritchie D.M., “The C Programming Language”,
Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[Knuthdl] Knuth D.E., “Sorting and Searching”, The Art of Computer Program-
ming, Vol. 23, Addison-Wesley Publishing Company, Reading, Massachusetts,
1973.

[Langdon84] Langdon G.G, “On Parsing Versus Mixed-Order Model Structures
for Data Compression”, IBM Research Report RJ-4163 (46091) 1/18/84, IBM
Research Laboratory, San Jose, CA 95193, 1984.

[PearsonSO] Pearson P.K., “Fast Hashing of Variable-Length Text Strings”, Com-
munications of the ACM, Vol. 33, No. 6, June 1990, pp. 677-680.

[Storer88] Storer J.A., “Data Compression: Methods and Theory”, Computer
Science Press, 1803 Research Boulvard, Rockville, Maryland 20850, 1988.

[Welch841 Welch T.A., “A Technique for High-Performance Data Compression”,
IEEE Computer, Vol. 17, No. 6, pp. 8-19.

[Williams901 Williams R.N., “Adaptive Data Compression”, Kluwer Academic
Publishers, 1990.

[Ziv77] Ziv J., Lempel A., “A Universal Algorithm for Sequential Data Compres-
sion”, IEEE Transactions on Information Theory, Vol. 23, No. 3, pp. 337-343.

[Ziv78] Ziv J., Lempel A., “Compression of Individual Sequences via Variable-
Rate Coding”, IEEE Transactions on Information Theory, Vol. 24, No. 5, pp. 530-
536.

