
Source Coding

3-13

Source Coding
The Communications Toolbox includes some basic functions for source coding.
Source coding, also known as quantization or signal formatting, includes the
concepts of analog-to-digital conversion and data compression.

Source coding divides into two basic procedures: source encoding and source
decoding. Source encoding converts a source signal into a digital code using a
quantization method. The source coded signal is represented by a set of
integers {0, 1, 2, ..., N-1}, where N is finite. Source decoding recovers the
original information signal sequence using the source coded signal. This
toolbox includes two source coding quantization methods: scalar quantization
and predictive quantization. A third source coding method, vector
quantization, is not included in this toolbox.

Scalar Quantization
Scalar quantization is a process that assigns a single value to inputs that are
within a specified range. Inputs that fall in a different range of values are
assigned a different single value. An analog signal is in effect digitized by

3 Tutorial

3-14

scalar quantization. For example, a sine wave, when quantized, will look like a
rising and falling stair step:

Scalar quantization requires the use of a mapping of N contiguous regions of
the signal range into N discrete values. The N regions are defined by a
partitioning that consists of N-1 distinction partition values within the signal
range. The partition values are arranged in ascending order and assigned
indices ranging from 1 to N-1. Each region has an index that is determined by
this formula:

For a signal value x, the index of the corresponding region is indx(x).

To implement scalar quantization you must specify a length N-1 vector
partition and a length N vector codebook. The vector partition, as its name

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

A
m

pl
itu

de

Quantized sine wave

indx x()
0 x partition 1()≤
i partition i() x partition i 1+()≤<

N 1– partition N 1–() x<





=

Source Coding

3-15

implies, divides the signal input range into N regions using N-1 partition
values. The partition values must be in strictly ascending order. The codebook
is a vector that assigns a value, typically either an endpoint of the region or
some average value of the interval, to each region defined in the partition.
Since each region must have an assigned output value, the length of the
codebook must equal the length of the partition. Another way to view this is
that the codebook functions as a table lookup with each element assigned to a
partition.

The index value indx(x) is the output of the quantization encode function. The
codebook contains the values that correspond to sample points. There is no
function for quantization decoding, which is simply constructing the quantized
signal using the stream of index values output by the quantizer. Construct the
quantized signal by using the MATLAB command:

y = codebook(indx+1);

In general, a codebook has the following relation with the vector partition:

The quality of the quantization, called the distortion, is the mean-square error
between the original signal data sig and the quantized signal quan:

where M is the number of samples of the source signal sig.

codebook 1() partition 1() codebook 2() partition 2() …≤ ≤ ≤ ≤
 ... codebook N 1–() partition N 1–() codebook N()≤ ≤ ≤

distortion
1
M
----- sig i() quan i()–()2

i 1=

M

∑=

3 Tutorial

3-16

The computation procedure for the quantization source coding and decoding is
shown in the figure below:

The dashed square at the top of this figure is the source encode algorithm,
which assigns an index after deciding in which region the input signal value
falls. The dashed square in the middle of the figure is the quantization decode
algorithm, which maps the input index to whatever value the codebook assigns
to that particular index. The dashed square at the bottom of the figure is the
distortion computation, which calculates a cumulative average in which M is
the total number of points used in the computation.

The MATLAB function quantiz computes all three outputs shown in the above
figure. The Simulink Scalar Quantizer block is available in the source code
sublibrary.

Training of Partition and Codebook Parameters
The key functions in quantization are the assignment of the partition and
codebook parameters. In large signal sets with a fine quantization scheme, the

> partition(1)

> partition(2)

> partition(N-1)

+
indx

codebook(indx)
quant

sig

source encode

quantization decode

+ -+

(.)2

Memory

/M+
distor

distortion computation

Source Coding

3-17

selection of all the correct parameters can be tedious. In the Communications
Toolbox you can train these two parameters by using the MATLAB function
lloyds. To train the parameters, you must prepare a training set, which
typically represents function input data. The function lloyds finds the
partition and codebook parameter vectors by minimizing the distortion using
the provided training data. Here is an example of the data training for a
sinusoidal signal:

N = 2^3; % three bits transfer channel
t = [0:1000]∗pi/50;
sig = sin(t); % one complete period of sinusoidal signal
[partition,codebook] = lloyds(sig,N);
[indx,quant,distor] = quantiz(sig,partition,codebook);
plot(t,sig,t,quant,'--');

In the above commands, sig is a sinusoidal signal to be quantized. The peak
amplitude of the input signal must be one. The trained codebook and the
partition can be used for sinusoidal signals of any frequency. The above code
generates a figure that compares the original signal (the smooth curve) to the
quantized signal (the digital curve):

The decoding procedure is simple using the basic MATLAB computation
format. Use the following command to obtain the decoded result:

quant = codebook(indx+1)

0 10 20 30 40 50 60 70
−1

−0.5

0

0.5

1

3 Tutorial

3-18

Companders
The quantization discussed above is linear. In certain applications, you may
need to quantize a signal based on the power level of the input signal. In this
case, it is common to use a logarithm computation before the quantization
operation. Since a simple logarithm computation can only handle a positive
signal, some modification of the input signal is needed. The logarithm
computation is known as a compressor. The reverse computation of a
compressor is called an expander. The combination of a compressor and
expander is called a compander (compress and expand). This toolbox supports
two companders: the µ-law and A-law companders. The selection of either
method is a matter of user preference.

The MATLAB function compand is designed for compander computation. The
Simulink block library includes four blocks for the µ-law and A-law compander
computations: µ-Law Compressor, µ-Law Expander, A-Law Compressor, and
A-Law Expander.

µ-law Compander
For a given signal x, the output y of the µ-law compressor is

where V is the peak value of signal x, which is also the peak value of y. µ is the
µ-law parameter of the compander. The function log is the natural logarithm
and sgn is the sign function.

The µ-law expander is the inverse of the compressor:

The MATLAB function for µ-law companding is compand. The corresponding
Simulink µ-Law Compressor and µ-Law Expander blocks also support µ-law
companding.

y
V 1 µ x V⁄+()log

1 µ+()log
--- x()sgn=

x
V
µ---- e

y 1 µ+()log V⁄
1+() y()sgn=

Source Coding

3-19

A-law Compander
For a given signal x, the output y of the A-law compressor is

where V is the peak value of signal x, which is also the peak value of y. A is the
A-law parameter of the compander. The function log is the natural logarithm
and sgn is the sign function.

The A-law expander is the inverse of the compressor:

The MATLAB function for A-law companding is compand. The corresponding
Simulink Α-Law Compressor and Α-Law Expander blocks also support Α-law
companding.

Predictive Quantization
The quantization introduced in the “Scalar Quantization” section is usually
implemented when there is no a priori knowledge about the transmitted signal.
In practice, a communications engineer often has some a priori information
about the message signals. An engineer can use this information to predict the
next signal to be transmitted based on past signal transmissions; i.e., he or she
can use the past data set x={x(k-m),...,x(k-2), x(k-1)} to predict x(k) by using
some function f(.). The most common way to implement predictive quantization
is to use the differential pulse code modulation (DPCM) method. The
Communications Toolbox provides the tools necessary to implement a DPCM
predictive quantizer.

y

A x
1 Alog+
---------------------- x()sgn

V 1 A x V⁄log+()
1 Alog+

-- x()sgn

 for 0 x A V⁄≤ ≤
 for A V⁄ x V≤<









=

x
y

1 Alog+
A

---------------------- y()sgn

e
y 1 Alog+() V⁄ 1– V

A---- y()sgn

 for 0 y
V

1 Alog+
----------------------≤ ≤

 for
V

1 Alog+
---------------------- y V≤<









=

3 Tutorial

3-20

Differential Pulse Code Modulation
Using the past data set and predictor as described above, the predicted value
is assumed to be

where k is the computation step index. The function f(.) is called the predictor;
the integer m is the predictive order. The predictive error is
quantized by using the method discussed in the “Scalar Quantization” section.

The structure of predictive quantization is:

This method is known as the differential pulse code modulation method
(DPCM). In the figure, indx(k) is the source encoded index, and y(k) is the
quantized output. The DPCM method transfers the bit length reduced indx(k)
instead of the real data x(k). At the receiving side, a quantization decoder
recovers the quantized y(k) from indx(k).

The figure below shows the quantization source decoding method:

The predictor must be the same one used in the encoding figure.

This toolbox uses a linear predictor:

x̂ k() f x k m–() ... x k 2–() x k 1–(), , ,()=

e k() x k() x̂ k()–=

Quantization
Source encode

Predictor

source input x(k) e(k)

-+ +

+

source encoded index indx(k)

quantized y(k)

x(k)^

Quantization
source decode

Predictor

source encoded index indx(k) quantized y(k)

x̂ k() p= 1()x k 1–() ... p m 1–()x k m– 1+() p m()x k m–()+ + +

Source Coding

3-21

The transfer function of this predictor is represented by a polynomial. The
vector represents the finite
impulse response (FIR) transfer function:

A special case of the DPCM source code method is the widely used
delta-modulation method, in which the linear predictor is a first order predictor
with

The Communications Toolbox provides MATLAB functions dpcmenco and
dpcmdeco for the source encoding and source decoding using the DPCM
method. This toolbox also provides the function dpcmopt, which uses a set of
training data to generate an optimal transfer function of the predictor p_trans,
the partition, and the codebook. The training data represents the input
signal used in the DPCM quantization. For example, you can use dpcmopt to
find the parameters needed to encode/decode a sinusoidal signal using the
delta-modulation method. This example is a continuation of the example
provided in the “Scalar Quantization” section:

% Generate the optimal predictive transfer function,
% the partition, and the codebook.
[p_trans,partition,codebook] = dpcmopt(sig,1,N);
% Encode the signal using DPCM.
indx = dpcmenco(sig,codebook,partition,p_trans);
% Decode using DPCM.
quant = dpcmdeco(indx,codebook,p_trans);
% Compare the original and the quantized signal.
plot(t,sig,t,quant,'--')

p_trans 0 p 1(), ... p k m– 1+() p k m–(),=

3 Tutorial

3-22

Note that the sample time is important in the DPCM quantization. The figure
below shows the plot generated from the code:

The predictor must be the same one used in the encoding figure. Comparing the
result generated in this example to the one generated by scalar quantization,
notice that the DPCM quantization is of much better quality. The distortion
here is 6.2158e-5, which is much lower than the distortion value of 5.002e-3
achieved by the scalar quantization. Both methods used three bit symbols in
the quantization.

Simulink blocks for the DPCM encode and decode are available in the source
code sublibrary. A simple block diagram example of using DPCM encode and
decode blocks for source coding is:

This block diagram encodes a generated signal using the DPCM method and
then recovers the signal by DPCM decoding. The scope in the block diagram
compares the original signal with the quantized signal. The curve displayed on
the scope is the same as the curve shown in the plot generated from the
MATLAB code.

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5

1

1.5

Signal
generator

Mux

Mux1 ScopeDPCM
decodeDPCM

encode

quantiz

3-186

3quantizPurpose Produce a quantization index and a quantized output value

Syntax index = quantiz(sig,partition);
[index,quants] = quantiz(sig,partition,codebook);
[index,quants,distor] = quantiz(sig,partition,codebook);

Description index = quantiz(sig,partition) returns the quantization levels in the real
vector signal sig using the parameter partition. partition is a real vector
whose entries are in strictly ascending order. If partition has length n, then
index is a column vector whose kth entry is

• 0 if

• m if

• n if

[index,quants] = quantiz(sig,partition,codebook) is the same as the
syntax above, except that codebook prescribes a value for each partition in the
quantization and quants contains the quantization of sig based on the
quantization levels and prescribed values. codebook is a vector whose length
exceeds the length of partition by one. quants is a row vector whose length is
the same as the length of sig. quants is related to codebook and index by

quants(ii) = codebook(index(ii)+1);

where ii is an integer between 1 and length(sig).

[index,quants,distor] = quantiz(sig,partition,codebook) is the same
as the syntax above, except that distor estimates the mean square distortion
of this quantization data set.

Examples The command below rounds several numbers between 1 and 100 up to the
nearest multiple of ten. quants contains the rounded numbers, and index tells
which quantization level each number is in.

[index,quants] = quantiz([3 34 84 40 23],10:10:90,10:10:100)

index =

 0
 3

sig k() partition 1()≤
partition m() sig k()< partition m 1+()≤
partition n() sig k()<

quantiz

3-187

 8
 3
 2

quants =

 10 40 90 40 30

See Also lloyds, dpcmenco, dpcmdeco

compand

3-53

3compandPurpose Source code mu-law or A-law compressor or expander

Syntax out = compand(in,Mu,v);
out = compand(in,Mu,v,'mu/compressor');
out = compand(in,Mu,v,'mu/expander');
out = compand(in,A,v,'A/compressor');
out = compand(in,A,v,'A/expander');

Description out = compand(in,param,v) implements a µ-law compressor for the input
vector in. Mu specifies µ and v is the input signal’s maximum magnitude. out
has the same dimensions and maximum magnitude as in.

out = compand(in,Mu,v,'mu/compressor') is the same as the syntax above.

out = compand(in,Mu,v,'mu/expander') implements a µ-law expander for
the input vector in. Mu specifies µ and v is the input signal’s maximum
magnitude. out has the same dimensions and maximum magnitude as in.

out = compand(in,A,v,'A/compressor') implements an A-law compressor
for the input vector in. The scalar A is the A-law parameter, and v is the input
signal’s maximum magnitude. out is a vector of the same length and maximum
magnitude as in.

out = compand(in,A,v,'A/expander') implements an A-law expander for
the input vector in. The scalar A is the A-law parameter, and v is the input
signal’s maximum magnitude. out is a vector of the same length and maximum
magnitude as in.

Note The prevailing parameters used in practice are µ = 255 and A = 87.6.

Examples The examples below illustrate the fact that compressors and expanders
perform inverse operations.

compressed = compand(1:5,87.6,5,'a/compressor')

compand

3-54

compressed =

 3.5296 4.1629 4.5333 4.7961 5.0000

expanded = compand(compressed,87.6,5,'a/expander')

expanded =

 1.0000 2.0000 3.0000 4.0000 5.0000

Algorithm For a given signal x, the output of the µ-law compressor is

where V is the maximum value of the signal x, µ is the µ-law parameter of the
compander, log is the natural logarithm, and sgn is the signum function (sign
in MATLAB).

The output of the A-law compressor is

where A is the A-law parameter of the compander and the other elements are
as in the µ-law case.

See Also quantiz, dpcmenco, dpcmdeco

References Sklar, Bernard, Digital Communications: Fundamentals and Applications,
Englewood Cliffs, N.J., Prentice-Hall, 1988.

y V 1 µ x V⁄+()log
1 µ+()log

--- x()sgn=

y

A x
1 Alog+
---------------------- x()sgn

V 1 A x V⁄()log+()
1 Alog+

--- x()sgn

 for 0 x V
A
----≤ ≤

 for V
A
---- x V≤<









=

6-38

6

Source Coding
Source coding in communication systems converts arbitrary real-world
information to an acceptable representation in communication systems. This
section provides some basic techniques as examples of solving the source
coding problems using Simulink and MATLAB. This toolbox includes the source
coding techniques of signal quantization and differential pulse code
modulation (DPCM).

This section also includes compander techniques. Compander is the name for
the combination of compressor and expander. Data compression is important
for transforming a signals with different power level transformation.

This figure shows the Source Coding Sublibrary:

Figure 6-6: Source Coding Sublibrary

6-39

Source Coding Reference Table
This table lists the Simulink blocks in the Source Coding Sublibrary. (They are
listed alphabetically in this table for your convenience.):

Block Name Description

A-Law Compressor Compresses data using an A-law
compander

A-Law Expander Recovers compressed data using an
A-law compander

DPCM Decode Recovers DPCM quantized signals

DPCM Encode Quantized input data signals

µ-Law Compressor Compresses data using a µ-law
compander

µ-Law Expander Recovers compressed data using a
µ-law compander

Quantization Decode Recovers signals quantized by the
Signal Quantizer or the Triggered
Signal Quantizer block

Signal Quantizer Quantizes an input signal

Triggered Signal Quantizer Quantizes an input signal when
triggered

Signal Quantizer

6-40

Signal Quantizer

6

Catagory Signal Quantization

Location Source Coding Sublibrary

Description The Signal Quantizer block encodes a message signal using scalar
quantization. The block uses the finite length of a digit to represent an analog
signal. Please refer to chapter 3, the Tutorial, for the general principles of
quantization computation. Note that you may lose computation accuracy in the
quantization processing.

In quantization, the major parameters are Quantization partition and
Quantization codebook. Quantization partition is a strict ascending
ordered vector, which contains the partition points used in dividing up the
input data. Quantization codebook is a quantization value vector with length
equal to the (length + 1) of the Quantization partition. If the input value is
less than the ith element of Quantization partition (and greater than (i-1)th
element, if any), the quantization value equals to the ith element in the
Quantization codebook.

6-41

The figure below shows the quantization process:

Figure 6-7: Quantization

This block has one input port and three output ports. The input port takes the
analog signal. The three output ports output, from top to bottom, the
quantization indexFigure 6-7:, the distortion value, and the quantization
valueFigure 6-7:. The distortion is a measurement of the quantization error.
The vector lengths of all three outputs are equal to the vector length of the
input. The quantization block can accept a vector input. When the input is a
vector, each output port outputs a vector with the vector length equal to the
input vector length. The block processes each element of the vector
independently; it performs the quantization at the sample time.

Partition

Partition_index

Partition_index

Quantization value

- p
1

p
3 p4 pN-1

p2

s = 01

s = N-1N

s = 34
s = 23
s = 12

0 1 2 N-1

c
2

c1

c
3

c
N

Block_input

6-42

You can use the function lloyds to train the available data to obtain the
expected partition and codebook vectors.

Dialog Box

Characteristics No. of Inputs/Outputs 1/3
Vectorized Inputs/ Outputs Yes/Yes
Input Vector Width Auto
Output Vector Width Same as the input vector width
Scalar Expansion N/A
Time Base Discrete time
States N/A
Direct feedthrough Yes

Pair Block Quantization Decode

Equivalent
M-function quantiz for quantization computation

lloyds for partition and codebook training using the available data

A length N vector, where N is the number of
symbols in the symbol set. This must be a strictly
ascending ordered vector.

A length N-1 strictly ascending ordered vector.

Specify the length of the input signal.

Specify the sample time. When this parameter is
a two-element vector, the second element is the
offset value.

Triggered Signal Quantizer

6-43

Triggered Signal QuantizerCatagory Signal Quantization

Location Source Coding Sublibrary

Description The Trigger Signal Quantizer block performs quantization when a trigger
signal occurs. This block is similar to the Signal Quantizer block except that
the quantization processing is controlled by the second input port of this block,
the trigger signal. This block renews its output when the scalar signal from the
second input port is a nonzero signal. Please refer to the Signal Quantizer block
for a discussion of scalar quantization.

This block has two input ports and three output ports. The quantizer block
takes message input from the first input port. It takes the trigger signal from
the second input port. The three output ports output quantization index,
quantization value, and quantization distortion. When the message input is a
vector, the three outputs are also vectors with their vector length equal to the
input vector length. Each element in the vector is independently processed.

Dialog Box

A length N vector, where N is the number of
partition values. This must be a strictly
ascending ordered vector.

A length N-1 strictly ascending ordered vector.

Specify the length of the input signal.

Triggered Signal Quantizer

6-44

Characteristics No. of Input/Outputs 2/3
Vectorized No. 1 Input Yes
Vectorized No. 2 Input No
Vectorized Outputs Yes
No. 1 Input Vector Width Auto
Output Vector Width Same as the input vector width
Scalar Expansion N/A
Time Base Triggered
States N/A
Direct feedthrough Yes

Pair Block Quantization Decode

Equivalent
M-function quantiz

Quantization Decode

6-45

Quantization DecodeCatagory Decoding

Location Source Coding Sublibrary

Description The Quantization Decode block recovers a message from a quantized signal by
finding the quantization value from quantization index. The input of this block
is the quantization index, which contains the elements in S = [s1, s2, ... sN] = [0,
1, ... N-1]. The output of this block is quantized value, which contains the
elements in C = [c1, c2, ..., cN]. The vector S and C are introduced in the Signal
Quantizer block.

This implementation of this block uses a look-up table.

Dialog Box

Characteristics No. of Inputs/ Outputs 1/1
Vectorized Inputs/ Outputs Yes/Yes
Input Vector Width Auto
Scalar Expansion N/A
Time Base Auto
States N/A
Direct feedthrough Yes

Pair Blocks Signal Quantizer, Triggered Signal Quantizer

Equivalent
M-function There is no quantization decode function in this toolbox. For decode

computation, use the command:

y = codebook(quantiz_index + 1);

A length N vector, where N+1 is the number of
partitions. The ith element is the quantization
output for the (i-1)th quantization index. The
default value for the codebook is
[-0.825 -0.5 0 0.5 0.825].

DPCM Encode

6-46

DPCM EncodeCatagory Encoding

Location Source Coding Sublibrary

Description The DPCM (Differential Pulse Code Modulation) Encode block quantizes an
input signal. This method uses a predictor to estimate the possible value of the
signal at the next step based on the past information into the system. The
predictive error is quantized.

This method is specially useful to quantize a signal with a predictable value.
This block uses the Signal Quantizer block. Refer to the Signal
Quantizer block for a discussion of the codebook and partition concepts.

The predictor in this toolbox is assumed to be a linear predictor. You can use
the function dpcmopt to train the parameters used in this block: Predictor
numerator, Predictor denominator, Quantization partition, and
Quantization codebook. You must input the numerator and denominator of
the predictor’s transfer function, but the output of dpcmopt provides only the
numerator. In most DPCM applications, the denominator of predictor transfer
function is 1, which means that the predictor is a FIR filter.

When the numerator of the predictor transfer function is a first-order
polynomial with the first element (zero-order element) equal to one, the DPCM
is a delta modulation.

DPCM Encode

6-47

Dialog Box

Characteristics No. of Inputs 1/2
Vectorized Inputs/ Outputs No/No
Time Base Discrete time
States N/A
Direct feedthrough Yes

Pair Block DPCM Decode

Equivalent
M-function dpcmenco

A vector containing the coefficients in ascending
order of the numerator of the predictor transfer
function.

A vector containing the coefficients in ascending
order of the denominator of the predictor transfer
function. Usually this parameter is set to 1.

A length N vector, where N+1 is the number of
partition values. This must be a strictly
ascending ordered vector.

A length N+1 strictly ascending ordered vector
that specifies the output values assigned to each
partition.

The calculation sample time. When this param-
eter is a two-element vector, the second element
is the offset value.

DPCM Decode

6-48

DPCM DecodeCatagory Decoding

Location Source Coding Sublibrary

Description The DPCM (Differential pulse code modulation) Decode block recovers a
quantized signal. This block inputs the DPCM encoded index signal and
outputs the recovered signal to the first output port and the predictive error to
the second output port.

Dialog Box

Characteristics No. of Inputs 1/2
Vectorized Inputs/ Outputs No/No
Scalar Expansion N/A
Time Base Discrete time
States N/A
Direct feedthrough Yes

Pair Block DPCM Encode

Equivalent
M-function dpcmdec

Match these parameters to the ones used in the
corresponding DPCM Encode block.

The calculation sample time. When this param-
eter is a two-element vector, the second element
is the offset value.

A-Law Compressor

6-49

A-Law CompressorCatagory Data Compression

Location Source Coding Sublibrary

Description The A-Law Compression block performs data compression. The formula for the
Α-law compressor is

The parameters to be specified in the Α-law compressor are the A value and the
peak magnitude V. The most commonly used A value in practice is 87.6.

Dialog Box

Characteristics No. of Inputs/Output 1/1
Vectorized Inputs/ Outputs Yes/Yes
Scalar Expansion N/A
Time Base Auto
States N/A
Direct feedthrough Yes

Pair Block A-Law Expander

Equivalent
M-function compand

y

A x
1 Alog+
---------------------- x()sgn

V 1 A x V⁄log+()
1 Alog+

-- x()sgn

 for 0 x A V⁄≤ ≤
 for A V⁄ x V≤<









=

The parameter A in the A-law compressor
equation.

Specify the peak value for the input signal. This
is the parameter V in the above equation, and the
output peak magnitude as well.

A-Law Expander

6-50

A-Law ExpanderCatagory Data Decompression

Location Source Coding Sublibrary

Description The A-Law Expander block recovers compressed data. The formula for the
Α-law expander is the inverse of the compressor function:

You must specify the A value and the peak magnitude V.

Dialog Box

Characteristics No. of Inputs/Output 1/1
Vectorized Inputs/ Outputs Yes/Yes
Scalar Expansion N/A
Time Base Auto
States N/A
Direct feedthrough Yes

Pair Block A-Law Compressor

Equivalent
M-function compand

x
y

1 Alog+
A---------------------- y()sgn

e y 1 Alog+() V⁄ 1– V
A
---- y()sgn

 for 0 y
V

1 Alog+
----------------------≤ ≤

 for
V

1 Alog+
---------------------- y V≤<









=

Match these parameters to the ones used in the
corresponding A-Law Compressor block.

µ-Law Compressor

6-51

µ-Law CompressorCatagory Data Compression

Location Source Coding Sublibrary

Description The µ-Law Compressor block performs data compression. The formula for the
µ-law compressor is:

The parameters to be specified in the µ-law compressor are µ value and the
peak magnitude V. The most commonly used µ value in practice is 255.

This block has one input and one output. It takes the x value and outputs the
y value described in the above equation.

Dialog Box

Characteristics No. of Inputs/Output 1/1
Vectorized Inputs/ Outputs Yes/Yes
Scalar Expansion N/A
Time Base Auto
States N/A
Direct feedthrough Yes

Pair Block µ-Law Expander

Equivalent
M-function compand

y
V 1 µ x V⁄+()log

1 µ+()log--- x()sgn=

The parameter µ in the µ-law compressor
equation. The default value is 255.

Specify the peak magnitude of the input signal.
This parameter is V in the above equation and
the output peak magnitude as well.

µ-Law Expander

6-52

µ-Law ExpanderCatagory Data Compression

Location Source Coding Sublibrary

Description The µ-Law Expander block recovers a signal from compressed data. The
formula for the µ-law expander is the inverse of the compressor function:

Same as the µ-law compressor, the parameters to be specified in the µ-law
compressor are µ value and the peak magnitude V.

This block takes y as the input and outputs x.

Dialog Box

Characteristics No. of Inputs/Output 1/1
Vectorized Inputs/ Outputs Yes/Yes
Scalar Expansion N/A
Time Base Auto
States N/A
Direct feedthrough Yes

Pair Block µ-Law Compressor

Equivalent
M-function compand

x
V
µ---- e y 1 µ+()log V⁄ 1+() y()sgn=

Match these parameters to the ones used in the
corresponding µ-Law Compressor block.

