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Abstract 

A new, simple, extremely fast, locally adaptive data compression algo- 
rithm of the LZ77 class is presented. The algorithm, called LZRW1, 
almost halves the size of text files, uses 16K of memory, and requires 
about 13 machine instructions to compress and about 4 machine in- 
structions to decompress each byte. This results in speeds of about 
77K and 250K bytes per second on a one MIPS machine. The algo- 
rithm runs in linear time and has a good worst case running time. It 
adapts quickly and has a negligible initialization overhead, making it 
fast and efficient for small blocks of data as well as large ones. 

1 Introduction 

Text data compression techniques can be partitioned into ad hoc techniques, dictio- 
nary techniques, and statistical techniques (see reviews in [Williams90][Bell9Oa] 
[Storer88]). Of these, the class of adaptive dictionary algorithms pioneered by 
Ziv and Lempel[Ziv77][Ziv78] provides the most practical trade off between flex- 
ibility, compression, and speed. Most modern text data compression programs, 
including the popular Unix compress utility (derived from [Welch84]), use Ziv 
and Lempel (LZ) algorithms. 

Although current LZ algorithms are generally fast, they are not always fast 
enough for embedded real-time systems with tight throughput requirements. In 
such systems time is the important constraint and designers of compression al- 
gorithms must concentrate primarily on speed, with compression taking second 
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place. This paper presents a new LZ variant called LZRWl that was designed 
with speed as the primary objective. The algorithm takes only a few instructions 
to process each byte, but still yields useful compression. LZRWl is based on the 
A1 algorithm by Fiala and Greene[FialaBS] which itself is a member of the class 
of LZ77 algorithms[Ziv77]. 

2 The LZRW1 Algorithm 

LZRWl uses the single pass literal/copy mechanism of [LZ77]. At each step, the 
next few bytes of input are transmitted either directly as a string or as a pointer 
to the text already transmitted (the history). Figure 1 shows how a particular 
message would be divided into literal items and copy items if the minimum 
length of an uncompressed copy item were three bytes. Compression is achieved 
by representing as much of the message using copy items, resorting to literal items 
only when a match of three or more bytes cannot be found. 

A walrus i n  S p a i n  - is a walrus i n  vain - 
~ . - ~ ~  .... *- -.. ......... _-..-lx..-A-a" ........ (offset=6, ~ (offset=21, (offset=20, 

0 length=3) . length=l 1 )  length=3) 
I ..,, --..,- * 
........................................... 

............................................................................................................................................................ : 

,..... ............. 
.@ 

,,,- ~ , , ~  

LZ77 class algorithms (of which LZRWl is a member) achieve com- 
pression by converting the text into a sequence of items, each of which 
can be either a literal item or a copy item. Literal items consist of the 
text they represent. Copy items consist of an offset and a pointer that 
together point to a substring of the text already transmitted. 

Figure 1: T h e  literal/copy compression technique. 

Figure 2 shows how LZRWl arranges the items into compressed data. A 
literal item contains a single byte that is coded directly. A copy item contains two 
bytes that specify the length[3,16] and oEset[1,4095] of a string appearing in the 
most recent 4095 bytes of the history (the Lempel). Control bits indicate whether 
items are literal or copy items, and are clustered into groups of 16 to preserve byte 
alignment. 

Figure 3 gives a snapshot of the LZRWl compression algorithm in execution. 
The algorithm's data structures, which form its source model, consist of a few 
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16-bit 
control 

word 16 items 

Length=b+l Length range is [3,16] 
Offsel=256'a+c Offset range is [I ,4095) 

This figure gives LZRWl's compressed data format. LZRWl uses a 
single bit to determine whether each item is a literal item or a copy 
item. To preserve byte alignment, items are clustered into '16-item 
groups preceded by a 16-bit control word. 

Figure 2: LZRWl's compressed data format.  

scalar variables, the input block, and a hash table of 4096 pointers. The hash 
table maps any three byte key to a single pointer that can point anywhere in 
memory, but which is likely to point to a matching key somewhere in the Lempel. 
At each step the hash table is used to try to find a match in the Lempel for 
the first three or more bytes of the Ziv (the next 16 bytes to be coded) with a 
match resulting in the generation of a copy item. Because the algorithm checks 
all pointers that it fetches from the hash table, the hash table does not need to 
be initialized. LZRWl updates its hash table after every item rather than every 
byte, making the hash table update rate inversely proportional to compression. 
This policy also exploits the phrase structure[Langdon84] present in most data. 

Decompression is extremely simple and fast. The decompressor processes one 
item at a time, translating it into one or more bytes which are appended to the 
end of the output. If the item is a literal item, its single literal byte is appended. 
If the item is a copy item, the length and offset fields are used to locate and copy 
a string already in the output block. Control bits must be buffered. 

LZRWl's hash function is constructed in accordance with the advice in 
[Knuth81] and seems to be near optimal. A recently published hash function 
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that used a lookup table[PearsonQO] was tried, but yielded identical performance. 
LZRWl’s hash table provides at most the most recent Lempel match of a key. 
Bell[Bell9Ob] discusses other LZ77 search techniques. 

A precise specification of the LZRWl text data compression algorithm is given 
in Figures 4-6 which provide a turnkey implementation in the C programming 
language[Kernighan88]. 

3 Experiments 

To test its performance, LZRWl was implemented in high and low level lan- 
guages and applied to the standard corpus of test files described in Appendix €3 
of [BellSOa]. 

Figure 7 gives the results of running the C implementation of LZRWl of Fig- 
ures 4-6 against a similar implementation of the A1 algorithm and against the 
Unix compress dtility (LZC) on a Pyramid 9820 computer running Unix. LZRWl 
compresses about 10% worse than LZC, but runs four times faster. LZRWl com- 
presses about 4.3% worse than the A1 algorithm, but runs ten times faster. This 
indicates that Al’s exhaustive search of the Lempel and its use of a two-byte 
minimum copy length does not greatly improve. its compression. 

Figure 8 gives the performance of an hand-optimized 68000 assembly lan- 
guage implementation of LZRWl running it on an 8MHz Macintosh-SE computer. 
LZRWl achieves reasonable compression while requiring an average of just thir- 
teen machine instructions to compress and four machine instructions to decompress 
each byte. The performance of LZRWl on the files zeros and noise demonstrates 
the stability of the algorithm. For the 68000 runs, each file was divided into 16K 
blocks each of which was compressed independently. This impaired compression 
by at most 2% absolute. This fact coupled with LZRWl’s negligible initialization 
cost makes LZRWl ideal for small blocks of data. 

4 Conclusion 

Use of a simple hash table mechanism along with ruthless elimination of house- 
keeping has led to the extremely fast LZRWl text compression algorithm that 
requires about 13 machine instructions to  compress each byte and about 4 ma- 
chine instructions to decompress each byte. This results in speeds of about 77K 
and 250K per second on a one MIP machine. LZRWl compresses ten percent 
worse than the popular Unix compress utility, but runs four times faster, making 
it possibly the fastest adaptive text compression algorithm yet. 
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LZRWl Data Compression Algorithm 

1. Hash first three bytes of Ziv. 
2. Look up hash table yielding pointer p. 
3. Replace table entry with pointer to Ziv. 
4. If p points into Lempel, and string 

matches at least first three bytes 
Ziv then code as copy item 
else code as literal item. 

5. Shift LempeVZiv bounda 

__________.____-____--------- - - -  

t" Lempel 

History P-S 
i 

Input block 
(src-len bytes long) 

This figure gives a snapshot of the LZRWl compression algorithm in 
execution. The horizontal bar represents the input block (in memory) 
which is used directly as a read-only data structure. The hash table 
maps three-byte keys to pointers that can point anywhere in memory, 
but which are likely to point to a recent occurrence of the key in the 
input already scanned (the history). At each step the hash table is used 
to map the first three bytes of the Ziv (defined to be the first sixteen 
bytes of the remaining part of message) to such a pointer. To keep the 
hash table up to date, the hash table entry from which the pointer was 
just fetched is replaced by a pointer to the Ziv. If the pointer fetched 
points to one of the most recent 4095 bytes of the history (the Lempel) 
and points to a match with the Ziv of at least three bytes, a copy 
item is constructed representing the bytes matched, otherwise a literal 
item is constructed representing the first byte in the Ziv. Because the 
algorithm checks the pointers that it obtains from the hash table, the 
hash table need not be initialized. 

Figure 3: The LZRWl algorithm in execution. 
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void lzrai-compress (p-src-f irst ,src-len,p-dst-f irst.p-dst-len) 
/* Input : Specify input block using p-arc-first and arc-len. */ 
/* Input : Point p-dst-first to the start of the output zone ( 0 2 ) .  */ 
/* Input */ 
/* Input : Input block and output zone must not overlap. */ 
/* Output */ 
/* Output : Output block in Mem[p_dst_first..p-dst_first+*p-dst_len-ll. */ 
/* Output : May write in OZ=Mem~p~dst~first..p~d~t~fir~ttsrc~len+266-11.*/ 
/* Output : Upon completion guaranteed *p_dst_len<=src_len+FLIG_BTTES. */ 
UBYTE *p-src_first,*p_dst-first; ULOBG src-len,*p-dst-len; 

*/ 
#define ITEMMAX 16 */ 
CUBYTE *p-src=p_src-first,*p_dst=p_dst=p-dstfirst; 

: Point p-dst-len to a ULOBG to receive the output length. 

: Length of output block written to *p-dst-len. 

#define PS *p++!=*s++ /* Body of inner unrolled matching loop. 
/* Maximum number of bytes in an expanded item. 

UBYTE *p_src_post=p_src_first+src_len,*p_dst-post~-dst-first+src_len; 
UBYTE *p~src~maxl=p~src~post-ITEMMAX.*p~src~marl6=p~src~post-i6*ITEMlUX; 
UBYTE *hash[4096l,*p-control; W O R D  control=O,control_bits=O; 
*p-dst=FLAG-COMPRESS; p-dst+=FLAG-BYTES; p-control=p-dst; p-dst+=l; 
while (TRUE) 
{UBYTE *p.*s; W O R D  unroll=l6.len,index; ULOBG offset; 
if (p-dst>p-dst-post) goto overrun; 
if (p-src>p-src-marl6) 
€unroll=i; 
if (p-src>p-src-maxi) 
cif (p-src==p-src-post) break; goto literal;)) 

begin-unrolled-loop: 
index=~~40543*~~~~p~src~01~~4~~p~arcCf)<<4)~p~src~21))>>4) & OxFFF; 
p=hash[indexl; hashbdexl =s=p-src; ofiset=s-p; 
if (offset>4096 I I  p<p-src-first I I  offset==O I I  PS I I  PS I I  PSI 

{literal: *p-dst++=*p-src++; control>>=l; control-bits++;) 
else 
CPS I I  PS I I  PS I I  PS I I  PS I 1  PS I I  PS I1 
PS I I  PS I I  PS I I  PS I I  PS I 1  Ps I I  stt; len=s-p-src-i; 
*p_dst++=((offset&OxFOO)>>4)+(len-l); *p-dst++=offsetkOxFF; 
p-src+=len; control=(control>>I)~Ox8000; control-bits++;) 

end-unrolled-loop: if (--unroll) goto begin-unrolled-loop; 
if (control-bits==l6) 
C*p-control=control&OxFF; * (p_control+l)=control>>8; 
p-control=p-dst; p_dst+=2; control=control-bits=O;) 

) 
control>>=i6-control~bits; 
*p-control++=control&OxFF; *p_control++=contro1>>8; 
if (p-control==p-dst) p_dst-=2; 
*p-dst-len=p-dst-p-dst-f irst ; 
return; 
overrun: fast_copy(p_src_first,p-dst_iirsttF~G-BYTES,src-len); 

*p_dst-first=FLAG-COPY; *p_dst-len=src_len+FLAG-BYTES; 
) 

Figure 4: The LZRWl compression algorithm. 
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#define UBYTE unsigned char /* Unsigned byte (1 byte ) */ 
#define UWORD unsigned int /* Unsigned word (2 bytes) */ 
#define ULOW unsigned long /* Unsigned longword (4 bytes) */ 
#define FLAG-BYTES 4 /* Number of bytes used by copy flag. */ 
#define FLAG-COMPRESS 0 /* Signals that compression occurred. */ 
#define FLAG-COPY 1 /* Signals that a copyover occurred. */ 

*/ 
UBYTE *p-src,*p-dst; {while (len--) *p-dsttt=*p-srctt ;) 
void fast-copy(p-src,p-dst,len) /* Fast copy routine. 

Figure 5: Definitions used by LZRWl code. 

void lzrwl_decompress(p~src_first,src~len,p~dst~first,p~dst~len) 
/* Input : Specify input block using p-src-first and src-len. */ 
/* Input : Point p-dst-first to the start of the output zone. */ 
/* Input : Point p-dst-len to a ULONG to receive the output length. */ 
/* Input : Input block and output zone must not overlap. User knows */ 
/* Input : upperbound on output block length from earlier compression. */ 
/* Input : In any case, maximum expansion possible is eight times. */ 

/* Output : Output block in MemCp_dst-first..p_dst_firstt*p-~st-len-ll. */ 
/* Output : Writes only in ~emCp-dst-first..p_dst-firstt*p-dst-len-ll. */ 
UBYTE *p-src-first, *p-dst-first; ULONG src-len, *p-dst-len; 
{UWORD controlbits=O, control; 

/* Output : Length of output block written to *p-dst-len. */ 

UBYTE *p-src=p-src-firsttnAG-BYTES, *p-dst=p-dst-first, 

if (*p-src-first==FLAG-COPY) 
*p-src-post=p-src-firsttsrc-len; 

{fast-copy(p-src-f irsttFLAG-BYTES ,p-dst-f irst , src-lan-FLAG-BYTES) ; 
*p-dst-len=src-len-FLAG-BYTES; return;) 

while (p-src! =p-src-post) 
{if (controlbits==O) 

{control=*p-src++; controll=(*p-srctt)<<S; controlbits=l6;) 

{UWORD offset,len; UBYTE *p; 
if (controlkl) 

offset=(*p-src&OxFO)<<4; len=lt(*p_srct+kOxF); 
offset+=*p-srct+kOxFF; p=p-dst-offset; 
while (len--) *p-dsttt=*ptt;) 

*p-dsttt=*p-srctt; 
else 

control>>=l; controlbits--; 
> 

*p-dst-len=p-dst-p-dst-first; 
> 

Figure 6: The LZRWl decompression algorithm. 
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%Rem 
File K 
bib 109 
bookl 751 
book2 597 
geo 100 
news 368 
objl 21 
obj2 241 
paper1 52 
paper2 80 
pic 501 
progc 39 
progl 70 

trans 91 
Averane 219 

ProgP 48 

K/Sec 

53.8 41.8 59.4 
61.6 43.2 67.9 
52.5 41.1 59.0 
94.0 76.0 84.4 
56.8 48.3 61.3 
60.8 65.3 61.7 
47.0 52.1 51.3 
51.5 47.2 57.8 
54.0 44.0 61.0 

*23.3 12.1 25.6 
49.1 48.3 54.6 
35.5 37.9 43.7 
35.4 38.9 42.8 
40.8 40.8 46.1 
51.2 45.5 55.5 

27 435 
21 419 
24 435 
13 270 
27 433 
4 350 

23 482 
26 433 
23 401 
37 604 
29 387 
20 466 
19 438 
25 457 
22 429 

58 94 
46 90 
49 92 
48 74 
44 87 
53 75 
41 86 
58 91 
64 94 

108 148 
55 90 
65 103 
63 98 
61 96 
58 94 

213 388 
186 368 
215 375 
167 313 
210 392 
191 420 
225 423 
226 371 
206 382 
346 506 
242 387 
241 412 
241 344 
241 436 
224 394 

This table compares the performance of the A1 (a simple LZ77 class al- 
gorithm by Fiala and Greene), LZC (U$x compress which is based on 
the LZW algorithm), and LZRWl (the topic of this paper) algorithms 
coded in C and running on a Pyramid 9820 computer. The implemen- 
tation of A1 used a hash table indexing into a bounded buffer array 
holding linked lists of hash matches. A standard corpus of files was used 
for the test. The %Rem columns give compression as a percentage re- 
maining. The I</Sec columns give the compression and decompression 
speeds in kilobytes (1024) per second. Decompression speeds are given 
relative to o u t p u t  (uncompressed) bytes. Speeds were calculated from 
the u s e r  time field given by an application of the unix t i m e  command 
to a block of ten consecutive compression runs. (*Note: The A1 algo- 
rithm took so long to run on the file p i c  that it was terminated and 
re-run, for the file p i c  only, with an upperbound of ten on its search). A 
comparison of LZRWl to its ancestor algorithm A1 shows that, while 
LZRWl compresses about 4.3% worse than the A1 algorithm, LZRWl 
runs ten times faster. LZRWl compresses about 10% absolute worse 
than LZW, but runs four times faster. LZRWl compresses relatively 
poorly on English text files (e.g. bookl), but compresses relatively 
well on non-English text files such as program texts and object files for 
which it betters LZW on both compression and speed. 

Figure 7: Performance of algorithms on a Pyramid  9820. 
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zeros 78 5 
noise 78 5 

File 
bib 
book1 
book2 
geo 
news 
objl 
ob j2 
paper1 
paper2 
pic 
progc 

ProgP 
progl 

13.4 136 205 4.1 2.7 
100.0 23 1178 24.4 0.25 

- 
K 

109 
751 
597 
100 
368 
21 

241 
52 
80 

501 
39 
70 
48 

- /16K 
7 

47 
38 

7 
24 
2 

16 
4 
6 

32 
3 
5 
4 

trans 91 6 
Average 219 14 

%Rem 
61.0 
69.5 
60.5 
85.6 
63.0 
61.9 
52.5 
59.5 
62.4 
25.8 
55.7 
44.7 
44.2 
47.9 
56.7 

K/Sec 
43 147 
40 132 
44 142 
31 131 
41 150 
41 161 
49 156 
45 143 
44 138 
87 187 
47 149 
58 157 
58 158 
53 162 
49 151 

Ins/Byte 
13.4 4.1 
14.7 4.6 
13.1 4.3 
18.5 4.7 
14.0 4.0 
14.2 3.7 
11.8 3.8 
12.9 4.2 
13.3 4.4 
6.5 3.1 

12.3 4.0 
10.0 3.8 
9.9 3.7 

10.9 3.7 
12.5 4.0 
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