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and  where PNi  is the  jth chip of the PN sequence and Tc is the 
chip duration. 
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An  Arithmetic  Checksum for Serial  Transmissions 

JOHN G. FLETCHER 

Absrracr-An error-detection  method  for  serial  transmissions  is 
presented  that  uses  an  integer  arithmetic  checksum.  The  checksum  is 
compared  with  cyclic-redundancy-check  methods  with  regard  to 
error-detecting  ability  and  efficiency of implementation  in  software 
(or  firmware).  The  method  is  a  bit  weaker  at  detection but is  more 
efficient,  thus  representing  a  different  and  potentially  useful  choice  in 
the  cost-benefit  spectrum. 

I. INTRODUCTION 

Serial transmission of information between computers is 
subject to errors  that arise from environmental disturbances 
and hardware  malfunction.  It is common practice to  append 
to each  transmission  a number of redundant check bits  in 
order to detect these  errors. The sender computes these bits 
as a function of the preceding bits in the transmission; the 
receiver performs  the  same  computation and accepts  the trans- 
mission as error-free only if the received check bits are the 
same as those  computed. 

The  generation and  verification of check bits is frequently 
carried out by  special hardware  that is part of the transmission 
equipment.  In these situations,  the check bits  are usually 
computed according to a  cyclic-redundancy-check  (CRC) 
algorithm. In such an  algorithm,  the  bits of a  transmission  are 
treated as the successive coefficients of a  polynomial over the 
binary field (the field of integers modulo 2), and  the check 
bits are  chosen so that  this polynomial is exactly divisible by 
a  preselected  polynomial that is a parameter of the algorithm. 
More complete  explanation of CRC’s may be found elsewhere 
[ 1 1.  The wide popularity of  CRC’s stems primarily from  two 
facts: 1) they have several proven, desirable properties with 
regard to  the  kind  and  number of errors  they will detect;  and 
2) they are  conveniently  and  efficiently  implemented  by 
hard ware. 

However, on most computers CRC’s are not conveniently 
and  efficiently implemented by software  (or firmware).  This 
is because most computers  do  not have instructions  oriented 
toward  computation involving polynomials over a  binary 
field;  rather,  their  instructions are oriented  toward conven- 
tional integer arithmetic. Programmers of CRC procedures 
must  choose  between  iterative loops  that shift  and test each 
bit of a  transmission or  methods  that  treat  short blocks of 
bits by table  look-up [2] .  These  procedures are significantly 
less efficient  with  respect to  execution  time (looping) or  stor- 
age requirements  (tables)  or  both  than  they would be if in- 
teger arithmetic could be  used. In  spite of this, CRC proce- 
dures  are often  implemented  in  software  (or firmware).  This 
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may be necessary because the transmission equipment  at  the 
other  end of the  communication channel uses CRC hardware. 
However, when both  ends of a  channel  implement the  redun- 
dancy check in  software  (or firmware) (as  in  the fairly com- 
mon case of two mini-, or micro-, computers communicating 
over a simple, one-byte-at-a-time, asynchronous channel), it 
would seem that a redundancy check based on integer arith- 
metic would be preferable because of increased speed and 
reduced  storage requirements. This assumes that  the  arithmetic 
redundancy check (checksum)  has  properties as desirable, or 
nearly as desirable, as a CRC. 

The  purpose of this  paper to  describe an  arithmetic check- 
sum for serial communication and to  compare  its  error-detect- 
ing properties  to  those of CRC’s. As will be seen, the proper- 
ties of the checksum are  not  quite as good as those of a CRC. 
The choice between  the  two  is,  therefore, a tradeoff  between 
degree of efficiency and degree of error-detection. 

11. AN ARITHMETIC CHECKSUM 

A  transmission is treated as a  sequence of K-bit  bytes. The 
design of most communication  interfaces  indicates  the choice 
K = 8. Each byte is treated as an  integer, and arithmetic is 
performed  on  these integers modulo M .  The only values of 
M considered in detail are M = 2K (two’s complement  arith- 
metic) and M = 2K - 1 (one’scomplement  arithmetic).  In  the 
former case, if an  addition overflows beyond K bits, the over- 
flow is discarded.  In  the  latter case the overflow is added back 
into  the  result as an  “end-around” carry. Either case is effi- 
ciently implemented  on most computers. Even though two’s 
complement is usually the more  efficient of the  two,  it  is 
shown below that  there are reasons to  prefer one’s comple- 
ment. 

The last R bytes of a  transmission  (assumed to  be a  whole 
number of bytes)  are  the check bytes.  The case R = 2 (when 
K = 8) is most important, because it  results  in  the same num- 
ber  of check bits, C = K R  = 16, as a  conventional CRC. The 
sender and receiver each maintain a record consisting of R 
one-byte checksums C(r ) ,  r = 0, 1, -, R - 1, that  are all 
initialized to zero at  the beginning of a  transmission. As each 
byte B is sent  or received, it is incorporated  into  the check- 
sums as follows: 

C(0) +- C(0) + B ;  

C(1) +- C(1) + CGO); 

... 

C(r) +- C(r)  + C(r - 1); 

... 

C(R - 1) + C(R - 1) + C(R - 2 ) .  (1) 

So only R additions per byte  transmitted are  needed to  com- 
pute  the checksums. 

When a  transmission is complete,  the receiver expects each 
C(r) to  equal  zero. The  sender arranges this (unless there is 
a  transmission error) by  choosing  each of the R check bytes  as 
follows: 

R - l  

B +- - c(r>. 
F O  

Each check byte B is computed by using the  then  current 
values of the C(r). The  byte is then included into  the check- 
sums according to   ( l ) ,  thus modifying the C(r)  SO that  the 
computation of the  next check byte will, in  general, yield a 
different value. It is easy to  see from  (1) and ( 2 )  that C(R - 1) 
is zero after  the first check byte is included  in the checksums. 
Then C(R - 2 ) ,  as well as C(R - l ) ,  is zero after  the second 
check byte is included, and so on  until all C(r )  are zero  (as 
desired) after  the last (Rth) check byte is included. This also 
means that  the Ith  check byte may be  computed by changing 
the  upper  limit in the sum  in ( 2 )  to  R - I, because the  omitted 
terms are all known to  be zero. In particular, the last  check 
byte (which is also the  last  byte of the transmission) is chosen 
to be simply -C(O). 

Speedy and compact algorithms embodying (1) and ( 2 )  
are easily implemented  on typical modem  computers, as 
should be clear. When implementing, it may be convenient to 
change the  connecting sign on  the right-hand side of one  or 
more of the  statements of (1)  from plus to  minus. Doing so 
has the  effect of  replacing some C(r) by their negatives, and 
compensating changes of sign must be made in ( 2 ) .  Since all 
C(r)  ultimately become zero,  the check bytes themselves are 
unchanged (except  for possibly switching from  one to  the 
other of the  two one’s complement zeros). Therefore,  this 
freedom of connectingsign selection may be  independently 
exercised by the  sender and the receiver. 

111. ANALYSIS OF THE CHECKSUM 

The remaining issue is-how good is the checksum at  error 
detection?  The analysis begins by  examining the consequences 
of (1). If B( l ) ,  B(2) ,  -e-, B ( N )  are the  bytes  in  the  order trans- 
mitted,  then  the value of C(r)  after L bytes have been trans- 
mitted is 

(I + r)! 
C(r, I, = x - B(L - I ) .  

I!r! 

This is readily proven  by induction  on  both r and L ,  starting 
with C(r, 0) = 0 and the  rather obvious fact  that C(0, L )  is 
simply the  sum of B( 1)  through B(L) .  Primary interest  centers 
on  the case L = N ,  the  total  number of bytes  in  the transmis- 
sion. Then  the C(r ,  N ) ,  as computed by the  sender, using the 
bytes sent as  the B ( N  - I ) ,  equal  zero  for all r < R .  The 
C(r ,  N )  as computed by the receiver are,  therefore, given 
either by using the  bytes received as the B ( N  - I )  or  instead 
by using the differences between  the received and sent  bytes, 
that is, the numerical values of the  errors  in  the received bytes. 
The  latter choice is made  hereafter,  and (3) is viewed as ex- 
pressing C ( r ,   L )  in  terms of the  errors B(L - I )  in  the received 
bytes. An error is detected if and only if C(r,  N )  # 0 for  at 
least one r < R .  

Consider  now the following, which is similar but  not 
identical to  (3): 

O’ 

( I  + r ) !  
E ( r , L ) =  - B(L - I ) .  

I!r! 

The  convention is made that B(L - I )  = 0 if (L - I) < 0 or 
(L - I )  > N ;  that is, the transmission is treated as being pre- 
ceded and  followed by  infinite sequences of error-free bytes. 
Also, the coefficient (I + r )  ! /I ! r ! is defined as ( I  + 1 ) ( I  -I- 
2 )  *.- ( I  + r ) / r  ! for all positive, zero, and negative integers I ,  so 
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long as r is a  nonnegative  integer. It is easy to see that  E(r, L )  
and  C(r, L )  are, in  general, different  quantities  except  for  the 
case L = N ,  when E(r, N )  = C(r, N ) .  The following lemma 
holds. 

Lemma: An error is detected,  that  is,  there  exists  an r < R 
such that C(r, N )  = E(r, N )  # 0, if there exists an r < R and an 
L such that  E(r, L )  # 0. No error is detected (which may be 
because there is in fact no  error),  that  is,  for each r < R, 
C(r, N )  = E(r, N )  = 0, if for each  r < R there  exists  an L such 
that E(r,  L )  = 0. 

The  lemma is an immediate corollary to  the assertion that, 
if for each  r < R, E(r, L )  = 0 for  one value of L (which may 
differ for each r),  then  E(r, L )  = 0 for all r < R and L .  This 
assertion is proven by induction  on  both r and L .  For each r, 
the  induction  on L starts with that L for which E(r, L )  = 0 is 
hypothesized and is two-way so as to  extend  the result to  both 
larger and smaller L .  For r = 0, the  induction is simply the 
observation that E(0, L )  is  independent of L ,  because all the 
coefficients in  the sum  are equal to one. For r > 0, the  induc- 
tion uses the  facts  that  E(r, L t 1) = E(r ,  L )  t E(r - 1, L + 1) 
and E(r, L - 1) = E(r ,  L )  - E(r - 1,   L) ,  which follow from 
t h e i d e n t i t y ( Z + r ) ! / 1 ! r ! = ( I + r - l ) ! / ( Z - l ) ! r ! t ( l + r -  
1) ! /Z!(r - 1) ! 

The foregoing lemma is the basic element in  the  subsequent 
analysis of the checksum algorithm. For each class of errors 
considered,  a single convenient  choice of L is made  for each 
r < R. To ascertain the  fraction of undetected  errors, we 
determine  the  fraction of errors in the class for which each 
E(r,  L )  = 0. The following classes of error considered are  the 
same as those usually considered  in  analyzing  a  CRC: 1) all 
possible errors (involving any number of bits);  2)  errors con- 
fined to a single burst of length C, where C = KR is the  num- 
ber of check bits; 3) errors affecting an odd  number of bits; 
and 4) errors affecting two  bits [ 1 ] . 

IV. DISTRIBUTION OF  ERRORS 

As a  preliminary to discussing these classes of errors,  let 
us consider the possible errors  in a single K-bit byte. Each of 
the possible 2K bit patterns  has a  numerical value m in  the 
range 0 < m < M; these values have a frequency  distribution 
f(m) such that  the value m occurs  for a fraction  f(m) of the 
bit patterns.  The values of the  error B in a byte (difference 
between the received and sent values) similarly have a  distri- 
bution expressing their  frequency of occurrence  among  the 
22K  bit  patterns of received and sent  byte pairs. For two’s 
complement arithmetic, each of the M = 2K values of a byte 
is represented by one bit pattern; so f(m) = 1/2K  for all m. 
It is not difficult to see that  this same uniform  distribution 
also applies to the  byte errors. For one’s complement  arith- 
metic, the value m = 0 is represented by two bit patterns, 
while the rest of the M = 2K - 1 values have one representa- 
tion; so f(0) = 1/2K-1 and f ( m )  = 1/2K, m # 0. The distri- 
bution of byte  errors can be computed by considering various 
cases, namely, whether  the  sent and received bytes are zero  or 
nonzero and whether  the  two  bytes are equal;  it is found  that 
f(0) = (2K-1 + 1)/22K-1  andf(m) = (2K + 1)/22K, m # 0. 

If the received and sent  bytes have the same bit pattern,  no 
error  has  occurred. These nonerrors  constitute  1/2K of the 
“errors” enumerated above and necessarily correspond to  the 
value m = 0. Therefore,f(O) - l/2K  represents  the  fraction of 
the  errors in  a single byte  that  cannot possibly be detected, 
because only the numerical values of errors  affect  the values 
of the E(r,  L) .  In  the two’s complement case this  fraction is 

zero, but in the one’s complement case it  is  l/22K-1, which 
corresponds to the possibility that  one of the  two representa- 
tions of zero  gets changed into  the  other. This is a shortcoming 
of one’s complement. However, it is worth  noting  that such an 
error involves a change in each of the K  bits of a single byte 
and  might, therefore, be  deemed relatively unlikely. On the 
other  hand,  the  fact  that all the  erroneous bits  assume the 
same value may increase the likelihood.  This could be over- 
come  by exclusive or-ing a  fixed pattern  into each byte  before 
submitting  it to  the checksum  algorithm. On an asynchronous 
channel,  moreover, if many adjacent bits assume the same 
erroneous value, then damage to  the  byte framing has  prob- 
ably occurred;  this should  be detected by the hardware. 

With two’s complement, where f(m)  for a single byte is 
constant  (the  distribution is uniform),  f(m)  is also constant 
for  the difference between  two bytes. With one’s complement, 
where the values of f(m)  for a single byte  extend over a range 
1/2K wide, the range of values of f(m)  for  the difference of 
two  bytes is narrower,  only 1/22K. These facts illustrate the 
following  useful  principle. 

Thermodynamic Principle: The  distribution of values of a 
sum is no less (usually more)  uniform  than  that of any of the 
addends. In  particular, if any addend  has a uniform distri- 
bution,  then so too does the sum. 

This  principle is so named because it expresses  a tendency 
away from diversity that is reminiscent of the second law of 
thermodynamics.  The measure of uniformity used is made 
explicit  in the following proof. 

The  finite  Fourier  transform  (or characteristic  statistical 
function) of a distribution  f(m)  is defined  as 

m=O 

which can be inverted to give 

j =  0 

Either of these  expressions may be derived from  the  other  by 
using a well-known property of the complex exponential, 

M -  1 x e2aijm/M = M ,  j = 0 (mod M), 
m-0 

=0, j # 0 (mod  M). 

This same property may be used to  demonstrate  the equiva- 
lence of two  definitions  for  the  norm 1 1  f 11 of the  distribution, 

m=O j =  0 

The fact that  the  f(m) are real and  nonnegative  and have a 
sum equal to one implies that 

The f(j), i # 0, represent  nonuniform (varying) components 
of f(m);  therefore, !heir magnitudes  are  measures of nonuni- 
formity.  In  fact, all f(j) equal  zero,j # 0, only for  the  uniform 



distribution f ( m )  = 1/M. A good single measure of nonuni- 
formity is 11 f 11, which assumes its minimum value of 1/M 
only for  the  uniform  distribution. 

If two  quantities with distributions g ( m )  and h ( m )  are 
added modulo  M,  the  distribution f ( m )  of  their sum is given 
by the  convolution 

M -  1 

f ( s )  = g(m)h(s - m )  
m=O 

where (s - m) is  computed  modulo M. From  this it follows 
that 

hi> = i (&(j) .  

The  fact  that  neither I i ( j )  I nor I h ( j )  I exceeds  one implies 
that 

I . b l  GII(OI, IS( j> l  <I i ( i ) l  
and 

l l f l l  <Ilg l l ,  l l f l l  G l l h l l ,  

that is, f ( m )  is  no less uniform  than g ( m )  or h(m) .  This  result 
is readily  generalized  by induction  to  more  than  two  addends, 
and  the  thermodynamic principle is proven. 

The principle is now applied to the sums in (4) that  define 
the E(r,  L ) .  The  terms  in  these  sums  do  not necessarily have 
the same distribution of values as  do  the B(L - I), because if 
the coefficient ( I  + r )! / I!r!  of  a term shares  a common  factor 
F with M, then  the  entire  term  has  this  factor. This  means 
that f ( m )  for  the  term equals zero  for values of m not divisible 
by F ;  the  distribution is “crowded”  into  the values of m that 
are divisible by F and,  therefore,  is usually less (never more) 
uniform  than  the  distribution of B(L - I). However, if the 
coefficient is relatively prime to M, no such  crowding occurs, 
and  the  distribution of the  term is as  uniform as that of 
B(L - I). Many, often  most, of the  coefficients  for each value 
of r are  in  fact relatively prime to  M. The  thermodynamic 
principle therefore implies that  the  distribution of each 
E(r, L )  is  at least as uniform as that of the B(L - I), i.e., 
uniform  for two’s complement  and  within a range of 1/22K 
for one’s complement.  Further, in the  limit  as  the  length N of 
the transmission  becomes  large, the  distribution becomes uni- 
form even in  the one’s complement case. 

The first class of errors to be  analyzed, all possible errors, 
is usually considered in the  limit as the  length of the trans- 
mission becomes large. Then,  as  just  noted, each E(r,  L )  = 0 
for  1/M of the errors. Therefore,  for  l/MR of the  errors,  one 
E(r, L )  equals  zero  for each r < R (and according to  the 
lemma,  an  error i s  not  detected).  This is true provided that 
E(r, L )  = 0 are independent  conditions  for  different r .  That 
they  are,  in  fact,  independent can be seen by choosing L = 0 
for all r .  Then  the  coefficients of B( l),  B(2), - e - ,  B(r)  are 0 and 
of B(r + 1) is ( - l ) r .  So the  condition E(r, 0 )  = 0 can be 
viewed as determining B(r -I- 1)  as a function of B(r -!- 2), 
B(r -I- 3), -, B(N) .  The  condition  for each successively larger 
value of r does  not involve those B(-I) determined by the 
conditions  for smaller r and is, therefore,  independent of 
them. 

The  fraction of all “errors” that are not  actually  errors is 
1 / 2 K N ,  which becomes negligible for large N .  So l/MR is the 

fraction of all errors that are undetected.  For two’s comple- 
ment (M = 2 K ) ,  this equals 1/2KR, exactly the same as for a 
CRC using the same number of check  bits C = KR [ 1 I .  For 
one’s complement (M = 2K - 1)  the fraction is only slightly 
more. In  the  important case K = 8, R = 2, two’s complement 
checksum  and CRC fail to  detect 0.001526 percent of all 
errors, while one’s complement fails to  detect  0.001538 per- 
cent.  In  summary,  the following has been proven. 

Theorem 1 :  Except  for a  higher order  effect  in  the one’s 
complement case, the checksum  (like  a CRC) detects all but a 
fraction 1/2‘ of all errors in the  limit of long  transmissions, 
where C is the  number of check  bits. 

V. BURST ERRORS 
A burst  error is an  error in transmission in which the  erro- 

neous  bits are confined to a single block  of  consecutive bits  no 
longer than  the  length of the  burst.  The just-analyzed class of 
all possible errors is the special case in which the  burst is of the 
same length  KN  as  the transmission. The  next class of errors 
to be examined  includes those  bursts of length  equal to the 
number of  check  bits C = KR.  In general, such a burst begins 
somewhere  within  a byte  and  ends equally far  into  the  Rth 
byte’following.  It is convenient t o  choose the  parameter L in 
(4) for all r so that  the  burst includes the last (K - b )  bits 
(where 0 < b < K) of the  Lth  byte, all bits of bytes L i- 1, 
L -!- 2, --, L + R - 1,  and  the  first b bits of the ( L  + R)th  
byte. Because low-order  bits of a byte are  conventionally 
transmitted  first,  the  error B(L)  in  the  Lth  byte is a multiple 
of  2b,  the  errors B(L + l ) ,  B(L -4- 2), *--, B(L -!- R - 1) are 
unrestricted,  and  the  error B(L + R )  is less than  2b  in magni- 
tude. 

For each r < R ,  the coefficient of B(L)  is 1,  of B(L i- l ) ,  
B(L + 2), - e - ,  B(L + r )  is 0,  and of B(L + r 4- 1)  is  (-l)r. So 
for r = R - 1,  the  condition E(R - 1, L )  = 0 becomes B(L)  - 
(-l)RB(L R )  = 0. The  restrictions  on B ( L )  and B(L -!- R )  
imply that B(L)  - (-l)RB(L -!- R )  has  the same distribution 
of values f ( m )  as  an  unrestricted B(L - 1). So the value zero 
occurs  (and  the  condition is satisfied) for  1/2K of the  errors 
(two’s complement)  or 1 /22K-’  more  than  this (one’s com- 
plement). The  condition E(r,  L )  = 0 for each successively 
smaller value of r can be viewed as determining B(L -!- r + 1 )  as 
a function of B(L)  and of B(L i- r i- 2), B(L + r -I- 3 ) ,  -, 
B(L i- R), which are already determined by the  conditions  for 
larger r .  So ‘out of all the  errors  that satisfy the  conditions  for 
larger r ,  the  fraction  that also satisfies the  condition  for r is 
1/2K (two’s complement)  or  either  1/22K-1  or  1/22K  more 
than  this (one’s complement, where the  two  alternatives  apply 
depending  on  whether  the value determined  for B(L i- r i- 1) 
is or is not zero). So, multiplying  these  fractions  together, 
one  finds  that all E(r, L )  equal  zero, r < R  (and  according to 
the  lemma,  an  error  is  not  detected),  for  1/2KR of the  burst 
errors when two’s complement is used. The  fraction is higher 
than  this when using one’s complement. In the  worst case 
(which is obtained  for  the  1/K of the  errors where b = 0 and 
the  burst lines up on  byte  boundaries), it is higher  by about 
R/2KR+K-‘. No attempt is made  here  to  get a better  bound 
than  this  when b # 0. 

After  the  fraction 1/2KR of the  “errors”  that are not 
actually errors  (the received and sent  byte sequences  being the 
same)  are subtracted  out,  one  finds  that  for two’s  comple- 
ment,  as  for a CRC [ 1 1 ,  no  burst  errors of length C = KR are 
undetected. One’s complement,  on  the  other  hand fails to 
detect a fraction  that is no  more  than  about  R/2 ~ R + K - I  
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In  the  important case K = 8, R = 2, the  exact fraction is 
0.000019  percent.  The  fact  that one’s complemeM-’:cannot 
detect all C-bit burst  errors  is of course  evident  from the  fact 
that it cannot  detect a K-bit  burst  in which one  of  the  two 
forms of zero is altered  into  the  other.  In summary, the fol- 
lowing has been proven. 

Theorem 2: The two’s complement checksum  (like  a CRC) 
detects all burst errors of length C, where C is the  number of 
check bits. The one’s complement checksum detects all but 
a fraction  on  the  order of CJK2c+K-1 , where K is the num- 
ber of bits in  a byte. . ,  

- .~ 
VI. PARITY CHECKING 

Many CRC’s parity check the  entire transmission and, 
.therefore,  detect all errors  affecting  an  odd  number of bits 
[ I  I .  There is no corresponding property  for  the checksum. 
However, there seems t,o be  no reason to regard this  as a de- 
ficiency. It  has already been  shown  that  the checksum detects 
essentially the same fraction  of all errors  as  does a  CRC; so 
whatever the checksum lacks  in  detecting odd-bit errors  must 
be made up by  improved detection of even-bit errors. Perhaps 
(although  this is not proven) it detects  more double-bit  errors. 

One case of  odd-bit errors is very important,  namely, 
single-bit errors. The checksum, like a CRC, detects  them all, 
because  such an  error changes some B(L - I ) ,  and therefore 
E(0, L ) ,  by +2b(0 < b < K ) .  So the following  holds. 

Theorem 3: The checksum  (like  a CRC) detects all single- 
bit errors. 

VII. DOUBLE-BIT ERRORS 

A great deal of the  complexity  in the treatment  of  the pre- 
ceding analysis has only been necessary to properly  treat  the 
one’s complement case. All that  has  been gained so far  from 
this complexity  is  the discovery that one’s complement  is 
slightly worse than two’s complement. However, as is about 
to be shown, one’s complement is significantly better  than 
two’s complement  in regard to the last class of errors to be 
considered-errors affecting  two bits-although neither version 
of the checksum is as good as a CRC. The aspect  of undetected 
double-bit errors  that usually is analyzed is their spacing: a 
suitable CRC can detect all double-bit errors provided that  the 
two  bits  are less than 2‘ - 1 bits  apart [ 11. 

In  order  that E(0,  L )  = 0 for a  double-bit error,  the  two 
erroneous  bits  must necessarily be in  the same bit  position  in 
different  bytes,  one being  a  change from 0 to  1 and  the  other 
a change from 1 to 0; then  the  error  in  one  byte is 2b(0 G b < 
k) and  in the  other is - 2 b .  It  is  convenient t o  choose  the 
parameter L for  each r in (4) so that  the second-occurring of 
the  two  errors is B(L + 1); then  its coefficient is 0 for r > 0. 
Therefore, if  the spacing of the  erroneous  bits  is ( I  -t 1) bytes 
so that  the  other  error is B(L - I ) ,  then  the  error is undetected 
only if 2b(I -I- r )! / l !r!  = 0 (mod M )  for 0 < r < R.  

The weakness  of two’s complement  in regard to this condi- 
tion  stems basically from  the  fact  that M (which equals 2 K )  
has many factors  of 2 .  In particular, in  the  important case 
R = 2 (where  only r = 1 satisfies 0 < r < R),  suppose  that 
b = K - I,  that is, the highest order bits of  two  bytes are 
erroneous.  Then  for I = 1 and r = 1, the value of 2’(Z -I- r ) ! / l ! r !  
is 2K = 0 (mod M).  The error is undetected  when  the errone: 
ous bits are  only ( I  + 1) = 2 bytes apart! Although  the  situa- 
tion improves  slightly for  largerR, it is clear that two’s comple- 

TABLE I 

A TYPICAL CRC,  THE  ONE’S  COMPLEMENT  CHECKSUM,  AND 
A COMPARISON OF THE  ERROR-DETECTING  PROPERTIES OF 

THE TWO’S COMPLEMENT  CHECKSUM  WHEN TWO 8-BIT 
CHECK  BYTES ARE USED 

Ones- Twos- 
CRC  co&ii&ent co&i&nt 

Fract ion of a l l  errors  undetected .001526% .001538% .0015263 
Fract ion o f  16-bit   burst  errors 

S ing le   b i t   e r rors  undetected. 
undetected none .000019% 

none 
none 

Minimum separation of undetected 
none none 

double b i t   e r r o r s  65535 2040 16 

,. ment is entirely  inadequate  with regard to the  property  under 
consideration and can be used in the checksum  algorithm 
only if one regards the  property as unimportant.  Further con- 
sideration is given only to one’s complement, where M (which 
equ& ZK - 1) is  not divisible by 2 .  This means  that 2b can 
be divided out of the  condition  for  nondetectability, which 
becomes (I + r)!/Z!r! = 0 (mod M) for 0 < r < R. 

For  r = 1, this  condition becomes (I -I- 1) = 0 (mod M), and 
the  least value satisfying it is I = M - 1. So, for R 2 2 the spac- 
cing between  the  erroneous  bits  must be at  least ( I  4- 1) = M 
bytes  or K(2K - 1) bits. This is smaller than  the spacing 
2KR - 1 achieved by a suitable CRC for  any R > 2 .  In  the 
important case K = 8, R = 2 ,  the spacing is 2040 bits  (check- 
sum) versus 65 535 bits (CRC), a ratio of about 32. Neverthe- 
less, the checksum  provides  a substantial spacing that  should 
be  quite  adequate  in  many applications. 

For r = 2, the  nondetectability  condition becomes ( 2  -l- 
1) ( 2  + 2 ) / 2  = 0 (mod M),  which (like the  condition  for r = 1) 
is satisfied for I = M - 1, because 2 does  not divide (I + 1) = 
M. So, having three check bytes (R = 3) is  no  better  with 
regard to  spacing than having two, Continuing to larger I (and 
R )  may produce a  gradual improvement.  For example, in  the 
case K = 8, where M = 255 is divisible by 3, the r = 3 condi- 
tion  forces  the spacing up  by a factor of 3 to  61 20 bits. Full 
analysis of the  matter would require delving further  into  the 
theory of numbers  than seems worth  the  effort, because the 
improvement  in spacing does  not seem to be great enough to 
be a  good ieason  for using additional check  bytes, and  in  any 
event two check bytes is the conventional choice. In  summary, 
the following has been proven. 

Theorem 4: The one’s complement checksum with at  least 
two check bytes  detects all double-bit  errors,  provided that 
the  erroneous  bits are  spaced  by less than K(2K - 1)  bits, 
where K is the  number of bits in  a byte.  (This  is a smaller 
spacing than  that achieved by  a suitable CRC.) 

VIII. CONCLUSION 

One’s complement checksum, while not  quite as good at  
error  detection  as a  suitable CRC with regard to the  properties 
examined, makes  a very respectable  showing (see summary  in 
Table I). Also, since its computation involves no  table look-up 
and  only  a few  (for 16-bit  checksums, two)  additions  per 8- 
bit  byte  transmitted, it is more efficiently implemented  in 
software (or firmware) on typical  processors than is a CRC. 
Overall it represents a very reasonable tradeoff  between effec- 
tiveness and efficiency, which should  make it appropriate  for 
use in many situations.  It  has  been  implemented successfully 
in connection  with SCULL, a link-level communication  proto- 
col 131 used in the  Octopus  computer  network  at  the Lawrence 
Livermore  National Laboratory. 
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Message Error Detecting  Properties of HDLC Protocols 

G. FUNK 

Abstract-Upgraded requirements for data integrity and data 
efficiency  in real-time process control applications necessitate critical 
investigations on existing standard data transmission conventions, 
such  as the HDLC (high level data link control) protocol. 

It is shown that a single bit error within an ordinary HDLC frame 
may  cause  an undetectable message error at the receiver. Further 
proposals for using modified HDLC protocols which guarantee the 
detection of single bit errors fail to detect double bit errors within a 
frame. Refined assessments for corresponding nondetectable message 
error probabilities are based on bit sequence probabilities in  HDLC 
frames which differ slightly from bit sequences in original text fields 
due  to  the  “bit escaping mechanism” required by the HDLC protocol. 

SUMMARY 

An investigation of the suitability of various standard com- 
munication  protocols  for  telecontrol  applications was pub- 
lished by the  author in the Proceedings on Communications, 
EUROCON ’77. Since then the particular question of justify- 
ing the  application of HDLC protocols, in which single bit er- 
rors may cause undetectable message errors, in  real-time  proc- 
ess control  communication  has been discussed intensively. 
Proposals for improving the  error  detecting  properties of 
HDLC protocols in order to  achieve data  integrity and  ef- 
ficiency  figures required  in process control  applications 
were analyzed by various experts. This paper summarizes 
basic results of these  efforts. 

I. INTRODUCTION 
Many investigations into  the  performance of standardized 

data transmission protocols consider  relations between  infor- 
mation  throughput,  protocol parameters,  and  probabilities for 
detected message errors. The  rate of nondetectable  informa- 
tion  errors in the transmission  link  may be considered negligible 
in some  applications,  or  it is assumed that plausibility or  other 
checks  in the user layer are  able to  recover these errors. 

However, in process control  applications where short, ur- 
gent  event-initiated  real-time information prevails, the  rate of 

A .  Single Bit Errors Cause Undetectable Message Errors 

The HDLC (high level data link control)  protocol [ I ]  
uses the  “FLAG”  character: 0 1  1  1  1  1  1 0 as a frame de- 
limiter.  This  bit pattern is excluded from  the message frame 
between a  leading  and  a  trailing FLAG  character by the  “bit 
escaping mechanism.” The  transmitter  inserts a “0” bit to 
the message bits, whenever five succeeding “1” bits occur  in 
the  arbitrary  (“bit-oriented”)  text.  The receiver eliminates 
the  inserted “0” bits by discarding the “0” bits  which  follow 
five adjacent “1” bits. The  end of a variable frame  length is 
recognized in the receiving station by the trailing FLAG 
character. 

The  16-bit  frame check sequence (FCS)  which terminates 
the  frame is designed for  detecting all single, double, and three 
bit  error  patterns within  a frame (Hamming distance 4). 

However, a single bit error may generate a spurious  FLAG 
within  a message frame.  This  means that a transmitted  frame 
of B octets is received as two frames of totally B - 1 octets. If 
this  error occurs and if the 16 bits ahead of the  spurious  FLAG 
are  by chance a correct  frame check  sequence,  an undetectable 
message error is received, as shown in Fig. 1. 

The  probability of this event is calculated  in the  next sec- 
tion. 

11. PROBABILITY OF SPURIOUS FLAG’S IN BIT- 
ORIENTED FRAMES 

A.  Coarse Assessment of  Occurrence of Spurious FLAG’S 

The  first  publication  on  this  topic [2]  estimates  the  proba- 

The bit escaping mechanism  excludes 8 bit patterns  from 
bility of spurious FLAG’s in the following way. 

256 possible octets.  For  the remaining 248  octets of the  type 

position: 1  2 3 4 5 6 7 8 

octet: 0 1  1  1 0 1  1 0 

bit  error: 

FLAG: 0 1  1 1 1  1  1 0 
$ 

the leading “0,” all “l’s,’’ and  the trailing “0” have to  be trans- 
mitted  error  free, while the “0’s” in  the positions 2 to 7 have 
to be affected by bit  errors in order to  generate  a FLAG  octet. 

In an assumed,  memoryless, binary,  symmetric  channel 
model each  bit  position is inverted independently with the  bit 
error  probability p and is received correctly with the  probability 
4 (4 < I - p ,  where the < sign applies to binary symmetric 
channels subject to erasure of bits). 

With these simplified  model assumptions [ 21 calculates the 
probability of spurious FLAG’s to be 
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