
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-30, NO. 1 , JANUARY 1982 247

where

N - i - 1

cl(i) PNnPNn+i (‘48)
n=O

N - 1

81(i) 4 2 P N n P N n + i - ~
n=N- i

Al(i)4c l (i+ 1) -c l (i) (-41 0)

Al(i) = 2 , (i + 1) - 2 , (i)
A A

(A1 1)

and where PNi is the jth chip of the PN sequence and Tc is the
chip duration.

(i + 1)2Tc2 - i2Tc2

2

(i + l)3Tc3 -i3Tc3

3

C(i) (i + 1)4 Tc4 - i 4 Tc4 --
T 4 1

where

A(i) cl(i)tl(i)Tc2 -iTc2(t1(i)Al(i)

+ Lil (i>cl (i)) + i 2 T , ~ A , (i)i\, (i) (A1 3)

B(i) 4 Tc(ll (i)Al(i) + c1 (i)) - 2TciAl (i) i l (i) (A14)

and

C(i) 4 A (i)i\ (i). (AI 5)

ACKNOWLEDGMENT

The authors would like to gratefully acknowledge the help
of D. Van Renen for carefully reviewing the details of the
analysis, and M. Mammone and Dr. F. Hemmati for generating
all the numerical results.

REFERENCES
D. L. Schilling, L. B. Milstein, R . L. Pickholtz, and R Brown,
“Optimization of the processing gain of an M-ary direct sequence
spread spectrum communication system,” IEEE Trans. Commun.,

L. B. Milstein, S . Davidovici, and D. L. Schilling, “The effect of a
comb jammer on a direct sequence spread spectrum communication

69.8.5.
system,” in Proc. 1980 Nat. Telecommun. Conf., pp. 69.8.1-

J . M. Wozencraft and I . M. Jacobs, Principles of Communication
Engineering. New York: Wiley, 1965, pp. 97-10],
D. E. Borth and M. B. Pursley, “Analysis of direct-sequence
spread spectrum multiple-access communications over Rician
fading channels,” IEEE Trans. Commun., vol. COM-27, pp.
1566-1577, Oct. 1979.
M. Schwartz, W. R. Bennett, and S. Stein, Communications
Systems and Techniques. New York: McCraw-Hill, 1966, ch. 9.
R . S. Kennedy, Fading Dispersive Communication Channels.
New York: Wiley, 1969.
M. Abramowitz and I . A. Stegun, Handbook of Mathematical
Functions. Nat. Bur. Stand., 1964, p. 377.

VOI. COM-28 pp. 1389-1398, Aug. 1980.

An Arithmetic Checksum for Serial Transmissions

JOHN G. FLETCHER

Absrracr-An error-detection method for serial transmissions is
presented that uses an integer arithmetic checksum. The checksum is
compared with cyclic-redundancy-check methods with regard to
error-detecting ability and efficiency of implementation in software
(or firmware). The method is a bit weaker at detection but is more
efficient, thus representing a different and potentially useful choice in
the cost-benefit spectrum.

I. INTRODUCTION

Serial transmission of information between computers is
subject to errors that arise from environmental disturbances
and hardware malfunction. It is common practice to append
to each transmission a number of redundant check bits in
order to detect these errors. The sender computes these bits
as a function of the preceding bits in the transmission; the
receiver performs the same computation and accepts the trans-
mission as error-free only if the received check bits are the
same as those computed.

The generation and verification of check bits is frequently
carried out by special hardware that is part of the transmission
equipment. In these situations, the check bits are usually
computed according to a cyclic-redundancy-check (CRC)
algorithm. In such an algorithm, the bits of a transmission are
treated as the successive coefficients of a polynomial over the
binary field (the field of integers modulo 2), and the check
bits are chosen so that this polynomial is exactly divisible by
a preselected polynomial that is a parameter of the algorithm.
More complete explanation of CRC’s may be found elsewhere
[1 1. The wide popularity of CRC’s stems primarily from two
facts: 1) they have several proven, desirable properties with
regard to the kind and number of errors they will detect; and
2) they are conveniently and efficiently implemented by
hard ware.

However, on most computers CRC’s are not conveniently
and efficiently implemented by software (or firmware). This
is because most computers do not have instructions oriented
toward computation involving polynomials over a binary
field; rather, their instructions are oriented toward conven-
tional integer arithmetic. Programmers of CRC procedures
must choose between iterative loops that shift and test each
bit of a transmission or methods that treat short blocks of
bits by table look-up [2] . These procedures are significantly
less efficient with respect to execution time (looping) or stor-
age requirements (tables) or both than they would be if in-
teger arithmetic could be used. In spite of this, CRC proce-
dures are often implemented in software (or firmware). This

Paper approved by the Editor for Data Communication Systems of
the IEEE Communications Society for publication without oral presen-
tation. Manuscript received June 8, 1979; revised August 6 , 1981. This
work was performed under the auspices of the U.S. Department of
Energy by the Lawrence Livermore Laboratory under Contract W-7405-
Eng-48.

The author is with the Lawrence Livermore Laboratory, University
of California, Livermore, CA 94550.

0090-6778/82/0100-0247$00.75 O 1982 IEEE

248 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-30, NO. 1 , JANUARY 1982

may be necessary because the transmission equipment at the
other end of the communication channel uses CRC hardware.
However, when both ends of a channel implement the redun-
dancy check in software (or firmware) (as in the fairly com-
mon case of two mini-, or micro-, computers communicating
over a simple, one-byte-at-a-time, asynchronous channel), it
would seem that a redundancy check based on integer arith-
metic would be preferable because of increased speed and
reduced storage requirements. This assumes that the arithmetic
redundancy check (checksum) has properties as desirable, or
nearly as desirable, as a CRC.

The purpose of this paper to describe an arithmetic check-
sum for serial communication and to compare its error-detect-
ing properties to those of CRC’s. As will be seen, the proper-
ties of the checksum are not quite as good as those of a CRC.
The choice between the two is, therefore, a tradeoff between
degree of efficiency and degree of error-detection.

11. AN ARITHMETIC CHECKSUM

A transmission is treated as a sequence of K-bit bytes. The
design of most communication interfaces indicates the choice
K = 8. Each byte is treated as an integer, and arithmetic is
performed on these integers modulo M . The only values of
M considered in detail are M = 2K (two’s complement arith-
metic) and M = 2K - 1 (one’scomplement arithmetic). In the
former case, if an addition overflows beyond K bits, the over-
flow is discarded. In the latter case the overflow is added back
into the result as an “end-around” carry. Either case is effi-
ciently implemented on most computers. Even though two’s
complement is usually the more efficient of the two, it is
shown below that there are reasons to prefer one’s comple-
ment.

The last R bytes of a transmission (assumed to be a whole
number of bytes) are the check bytes. The case R = 2 (when
K = 8) is most important, because it results in the same num-
ber of check bits, C = K R = 16, as a conventional CRC. The
sender and receiver each maintain a record consisting of R
one-byte checksums C(r) , r = 0, 1, -, R - 1, that are all
initialized to zero at the beginning of a transmission. As each
byte B is sent or received, it is incorporated into the check-
sums as follows:

C(0) +- C(0) + B ;

C(1) +- C(1) + CGO);

...

C(r) +- C(r) + C(r - 1);

...

C(R - 1) + C(R - 1) + C(R - 2) . (1)

So only R additions per byte transmitted are needed to com-
pute the checksums.

When a transmission is complete, the receiver expects each
C(r) to equal zero. The sender arranges this (unless there is
a transmission error) by choosing each of the R check bytes as
follows:

R - l

B +- - c(r>.
F O

Each check byte B is computed by using the then current
values of the C(r). The byte is then included into the check-
sums according to (l) , thus modifying the C(r) SO that the
computation of the next check byte will, in general, yield a
different value. It is easy to see from (1) and (2) that C(R - 1)
is zero after the first check byte is included in the checksums.
Then C(R - 2) , as well as C(R - l) , is zero after the second
check byte is included, and so on until all C(r) are zero (as
desired) after the last (Rth) check byte is included. This also
means that the Ith check byte may be computed by changing
the upper limit in the sum in (2) to R - I, because the omitted
terms are all known to be zero. In particular, the last check
byte (which is also the last byte of the transmission) is chosen
to be simply -C(O).

Speedy and compact algorithms embodying (1) and (2)
are easily implemented on typical modem computers, as
should be clear. When implementing, it may be convenient to
change the connecting sign on the right-hand side of one or
more of the statements of (1) from plus to minus. Doing so
has the effect of replacing some C(r) by their negatives, and
compensating changes of sign must be made in (2) . Since all
C(r) ultimately become zero, the check bytes themselves are
unchanged (except for possibly switching from one to the
other of the two one’s complement zeros). Therefore, this
freedom of connectingsign selection may be independently
exercised by the sender and the receiver.

111. ANALYSIS OF THE CHECKSUM

The remaining issue is-how good is the checksum at error
detection? The analysis begins by examining the consequences
of (1). If B(l) , B(2) , -e-, B (N) are the bytes in the order trans-
mitted, then the value of C(r) after L bytes have been trans-
mitted is

(I + r)!
C(r, I, = x - B(L - I) .

I!r!

This is readily proven by induction on both r and L , starting
with C(r, 0) = 0 and the rather obvious fact that C(0, L) is
simply the sum of B(1) through B(L) . Primary interest centers
on the case L = N , the total number of bytes in the transmis-
sion. Then the C(r , N) , as computed by the sender, using the
bytes sent as the B (N - I) , equal zero for all r < R . The
C(r , N) as computed by the receiver are, therefore, given
either by using the bytes received as the B (N - I) or instead
by using the differences between the received and sent bytes,
that is, the numerical values of the errors in the received bytes.
The latter choice is made hereafter, and (3) is viewed as ex-
pressing C (r , L) in terms of the errors B(L - I) in the received
bytes. An error is detected if and only if C(r, N) # 0 for at
least one r < R .

Consider now the following, which is similar but not
identical to (3):

O’

(I + r) !
E (r , L) = - B(L - I) .

I!r!

The convention is made that B(L - I) = 0 if (L - I) < 0 or
(L - I) > N ; that is, the transmission is treated as being pre-
ceded and followed by infinite sequences of error-free bytes.
Also, the coefficient (I + r) ! /I ! r ! is defined as (I + 1) (I -I-
2) *.- (I + r) / r ! for all positive, zero, and negative integers I , so

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-30, NO. 1 , JANUARY 1982 249

long as r is a nonnegative integer. It is easy to see that E(r, L)
and C(r, L) are, in general, different quantities except for the
case L = N , when E(r, N) = C(r, N) . The following lemma
holds.

Lemma: An error is detected, that is, there exists an r < R
such that C(r, N) = E(r, N) # 0, if there exists an r < R and an
L such that E(r, L) # 0. No error is detected (which may be
because there is in fact no error), that is, for each r < R,
C(r, N) = E(r, N) = 0, if for each r < R there exists an L such
that E(r, L) = 0.

The lemma is an immediate corollary to the assertion that,
if for each r < R, E(r, L) = 0 for one value of L (which may
differ for each r), then E(r, L) = 0 for all r < R and L . This
assertion is proven by induction on both r and L . For each r,
the induction on L starts with that L for which E(r, L) = 0 is
hypothesized and is two-way so as to extend the result to both
larger and smaller L . For r = 0, the induction is simply the
observation that E(0, L) is independent of L , because all the
coefficients in the sum are equal to one. For r > 0, the induc-
tion uses the facts that E(r, L t 1) = E(r , L) t E(r - 1, L + 1)
and E(r, L - 1) = E(r , L) - E(r - 1, L) , which follow from
t h e i d e n t i t y (Z + r) ! / 1 ! r ! = (I + r - l) ! / (Z - l) ! r ! t (l + r -
1) ! /Z!(r - 1) !

The foregoing lemma is the basic element in the subsequent
analysis of the checksum algorithm. For each class of errors
considered, a single convenient choice of L is made for each
r < R. To ascertain the fraction of undetected errors, we
determine the fraction of errors in the class for which each
E(r, L) = 0. The following classes of error considered are the
same as those usually considered in analyzing a CRC: 1) all
possible errors (involving any number of bits); 2) errors con-
fined to a single burst of length C, where C = KR is the num-
ber of check bits; 3) errors affecting an odd number of bits;
and 4) errors affecting two bits [1] .

IV. DISTRIBUTION OF ERRORS

As a preliminary to discussing these classes of errors, let
us consider the possible errors in a single K-bit byte. Each of
the possible 2K bit patterns has a numerical value m in the
range 0 < m < M; these values have a frequency distribution
f(m) such that the value m occurs for a fraction f(m) of the
bit patterns. The values of the error B in a byte (difference
between the received and sent values) similarly have a distri-
bution expressing their frequency of occurrence among the
22K bit patterns of received and sent byte pairs. For two’s
complement arithmetic, each of the M = 2K values of a byte
is represented by one bit pattern; so f(m) = 1/2K for all m.
It is not difficult to see that this same uniform distribution
also applies to the byte errors. For one’s complement arith-
metic, the value m = 0 is represented by two bit patterns,
while the rest of the M = 2K - 1 values have one representa-
tion; so f(0) = 1/2K-1 and f (m) = 1/2K, m # 0. The distri-
bution of byte errors can be computed by considering various
cases, namely, whether the sent and received bytes are zero or
nonzero and whether the two bytes are equal; it is found that
f(0) = (2K-1 + 1)/22K-1 andf(m) = (2K + 1)/22K, m # 0.

If the received and sent bytes have the same bit pattern, no
error has occurred. These nonerrors constitute 1/2K of the
“errors” enumerated above and necessarily correspond to the
value m = 0. Therefore,f(O) - l/2K represents the fraction of
the errors in a single byte that cannot possibly be detected,
because only the numerical values of errors affect the values
of the E(r, L) . In the two’s complement case this fraction is

zero, but in the one’s complement case it is l/22K-1, which
corresponds to the possibility that one of the two representa-
tions of zero gets changed into the other. This is a shortcoming
of one’s complement. However, it is worth noting that such an
error involves a change in each of the K bits of a single byte
and might, therefore, be deemed relatively unlikely. On the
other hand, the fact that all the erroneous bits assume the
same value may increase the likelihood. This could be over-
come by exclusive or-ing a fixed pattern into each byte before
submitting it to the checksum algorithm. On an asynchronous
channel, moreover, if many adjacent bits assume the same
erroneous value, then damage to the byte framing has prob-
ably occurred; this should be detected by the hardware.

With two’s complement, where f(m) for a single byte is
constant (the distribution is uniform), f(m) is also constant
for the difference between two bytes. With one’s complement,
where the values of f(m) for a single byte extend over a range
1/2K wide, the range of values of f(m) for the difference of
two bytes is narrower, only 1/22K. These facts illustrate the
following useful principle.

Thermodynamic Principle: The distribution of values of a
sum is no less (usually more) uniform than that of any of the
addends. In particular, if any addend has a uniform distri-
bution, then so too does the sum.

This principle is so named because it expresses a tendency
away from diversity that is reminiscent of the second law of
thermodynamics. The measure of uniformity used is made
explicit in the following proof.

The finite Fourier transform (or characteristic statistical
function) of a distribution f(m) is defined as

m=O

which can be inverted to give

j = 0

Either of these expressions may be derived from the other by
using a well-known property of the complex exponential,

M - 1 x e2aijm/M = M , j = 0 (mod M),
m-0

=0, j # 0 (mod M).

This same property may be used to demonstrate the equiva-
lence of two definitions for the norm 1 1 f 11 of the distribution,

m=O j = 0

The fact that the f(m) are real and nonnegative and have a
sum equal to one implies that

The f(j), i # 0, represent nonuniform (varying) components
of f(m); therefore, !heir magnitudes are measures of nonuni-
formity. In fact, all f(j) equal zero,j # 0, only for the uniform

distribution f (m) = 1/M. A good single measure of nonuni-
formity is 11 f 11, which assumes its minimum value of 1/M
only for the uniform distribution.

If two quantities with distributions g (m) and h (m) are
added modulo M, the distribution f (m) of their sum is given
by the convolution

M - 1

f (s) = g(m)h(s - m)
m=O

where (s - m) is computed modulo M. From this it follows
that

hi> = i (&(j) .

The fact that neither I i (j) I nor I h (j) I exceeds one implies
that

I . b l GII(OI, IS(j> l <I i (i) l
and

l l f l l <Ilg l l , l l f l l G l l h l l ,

that is, f (m) is no less uniform than g (m) or h(m) . This result
is readily generalized by induction to more than two addends,
and the thermodynamic principle is proven.

The principle is now applied to the sums in (4) that define
the E(r, L) . The terms in these sums do not necessarily have
the same distribution of values as do the B(L - I), because if
the coefficient (I + r)! / I!r! of a term shares a common factor
F with M, then the entire term has this factor. This means
that f (m) for the term equals zero for values of m not divisible
by F ; the distribution is “crowded” into the values of m that
are divisible by F and, therefore, is usually less (never more)
uniform than the distribution of B(L - I). However, if the
coefficient is relatively prime to M, no such crowding occurs,
and the distribution of the term is as uniform as that of
B(L - I). Many, often most, of the coefficients for each value
of r are in fact relatively prime to M. The thermodynamic
principle therefore implies that the distribution of each
E(r, L) is at least as uniform as that of the B(L - I), i.e.,
uniform for two’s complement and within a range of 1/22K
for one’s complement. Further, in the limit as the length N of
the transmission becomes large, the distribution becomes uni-
form even in the one’s complement case.

The first class of errors to be analyzed, all possible errors,
is usually considered in the limit as the length of the trans-
mission becomes large. Then, as just noted, each E(r, L) = 0
for 1/M of the errors. Therefore, for l/MR of the errors, one
E(r, L) equals zero for each r < R (and according to the
lemma, an error i s not detected). This is true provided that
E(r, L) = 0 are independent conditions for different r . That
they are, in fact, independent can be seen by choosing L = 0
for all r . Then the coefficients of B(l), B(2), - e - , B(r) are 0 and
of B(r + 1) is (- l) r . So the condition E(r, 0) = 0 can be
viewed as determining B(r -I- 1) as a function of B(r -!- 2),
B(r -I- 3), -, B(N) . The condition for each successively larger
value of r does not involve those B(-I) determined by the
conditions for smaller r and is, therefore, independent of
them.

The fraction of all “errors” that are not actually errors is
1 / 2 K N , which becomes negligible for large N . So l/MR is the

fraction of all errors that are undetected. For two’s comple-
ment (M = 2 K) , this equals 1/2KR, exactly the same as for a
CRC using the same number of check bits C = KR [1 I . For
one’s complement (M = 2K - 1) the fraction is only slightly
more. In the important case K = 8, R = 2, two’s complement
checksum and CRC fail to detect 0.001526 percent of all
errors, while one’s complement fails to detect 0.001538 per-
cent. In summary, the following has been proven.

Theorem 1 : Except for a higher order effect in the one’s
complement case, the checksum (like a CRC) detects all but a
fraction 1/2‘ of all errors in the limit of long transmissions,
where C is the number of check bits.

V. BURST ERRORS
A burst error is an error in transmission in which the erro-

neous bits are confined to a single block of consecutive bits no
longer than the length of the burst. The just-analyzed class of
all possible errors is the special case in which the burst is of the
same length KN as the transmission. The next class of errors
to be examined includes those bursts of length equal to the
number of check bits C = KR. In general, such a burst begins
somewhere within a byte and ends equally far into the Rth
byte’following. It is convenient t o choose the parameter L in
(4) for all r so that the burst includes the last (K - b) bits
(where 0 < b < K) of the Lth byte, all bits of bytes L i- 1,
L -!- 2, --, L + R - 1, and the first b bits of the (L + R)th
byte. Because low-order bits of a byte are conventionally
transmitted first, the error B(L) in the Lth byte is a multiple
of 2b, the errors B(L + l) , B(L -4- 2), *--, B(L -!- R - 1) are
unrestricted, and the error B(L + R) is less than 2b in magni-
tude.

For each r < R , the coefficient of B(L) is 1, of B(L i- l) ,
B(L + 2), - e - , B(L + r) is 0, and of B(L + r 4- 1) is (-l)r. So
for r = R - 1, the condition E(R - 1, L) = 0 becomes B(L) -
(-l)RB(L R) = 0. The restrictions on B (L) and B(L -!- R)
imply that B(L) - (-l)RB(L -!- R) has the same distribution
of values f (m) as an unrestricted B(L - 1). So the value zero
occurs (and the condition is satisfied) for 1/2K of the errors
(two’s complement) or 1 /22K-’ more than this (one’s com-
plement). The condition E(r, L) = 0 for each successively
smaller value of r can be viewed as determining B(L -!- r + 1) as
a function of B(L) and of B(L i- r i- 2), B(L + r -I- 3) , -,
B(L i- R), which are already determined by the conditions for
larger r . So ‘out of all the errors that satisfy the conditions for
larger r , the fraction that also satisfies the condition for r is
1/2K (two’s complement) or either 1/22K-1 or 1/22K more
than this (one’s complement, where the two alternatives apply
depending on whether the value determined for B(L i- r i- 1)
is or is not zero). So, multiplying these fractions together,
one finds that all E(r, L) equal zero, r < R (and according to
the lemma, an error is not detected), for 1/2KR of the burst
errors when two’s complement is used. The fraction is higher
than this when using one’s complement. In the worst case
(which is obtained for the 1/K of the errors where b = 0 and
the burst lines up on byte boundaries), it is higher by about
R/2KR+K-‘. No attempt is made here to get a better bound
than this when b # 0.

After the fraction 1/2KR of the “errors” that are not
actually errors (the received and sent byte sequences being the
same) are subtracted out, one finds that for two’s comple-
ment, as for a CRC [1 1 , no burst errors of length C = KR are
undetected. One’s complement, on the other hand fails to
detect a fraction that is no more than about R/2 ~ R + K - I

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-30, NO. I , JANUARY 1982 25 1

In the important case K = 8, R = 2, the exact fraction is
0.000019 percent. The fact that one’s complemeM-’:cannot
detect all C-bit burst errors is of course evident from the fact
that it cannot detect a K-bit burst in which one of the two
forms of zero is altered into the other. In summary, the fol-
lowing has been proven.

Theorem 2: The two’s complement checksum (like a CRC)
detects all burst errors of length C, where C is the number of
check bits. The one’s complement checksum detects all but
a fraction on the order of CJK2c+K-1 , where K is the num-
ber of bits in a byte. . ,

- .~
VI. PARITY CHECKING

Many CRC’s parity check the entire transmission and,
.therefore, detect all errors affecting an odd number of bits
[I I . There is no corresponding property for the checksum.
However, there seems t,o be no reason to regard this as a de-
ficiency. It has already been shown that the checksum detects
essentially the same fraction of all errors as does a CRC; so
whatever the checksum lacks in detecting odd-bit errors must
be made up by improved detection of even-bit errors. Perhaps
(although this is not proven) it detects more double-bit errors.

One case of odd-bit errors is very important, namely,
single-bit errors. The checksum, like a CRC, detects them all,
because such an error changes some B(L - I) , and therefore
E(0, L) , by +2b(0 < b < K) . So the following holds.

Theorem 3: The checksum (like a CRC) detects all single-
bit errors.

VII. DOUBLE-BIT ERRORS

A great deal of the complexity in the treatment of the pre-
ceding analysis has only been necessary to properly treat the
one’s complement case. All that has been gained so far from
this complexity is the discovery that one’s complement is
slightly worse than two’s complement. However, as is about
to be shown, one’s complement is significantly better than
two’s complement in regard to the last class of errors to be
considered-errors affecting two bits-although neither version
of the checksum is as good as a CRC. The aspect of undetected
double-bit errors that usually is analyzed is their spacing: a
suitable CRC can detect all double-bit errors provided that the
two bits are less than 2‘ - 1 bits apart [11.

In order that E(0, L) = 0 for a double-bit error, the two
erroneous bits must necessarily be in the same bit position in
different bytes, one being a change from 0 to 1 and the other
a change from 1 to 0; then the error in one byte is 2b(0 G b <
k) and in the other is - 2 b . It is convenient t o choose the
parameter L for each r in (4) so that the second-occurring of
the two errors is B(L + 1); then its coefficient is 0 for r > 0.
Therefore, if the spacing of the erroneous bits is (I -t 1) bytes
so that the other error is B(L - I) , then the error is undetected
only if 2b(I -I- r)! / l !r! = 0 (mod M) for 0 < r < R.

The weakness of two’s complement in regard to this condi-
tion stems basically from the fact that M (which equals 2 K)
has many factors of 2 . In particular, in the important case
R = 2 (where only r = 1 satisfies 0 < r < R), suppose that
b = K - I, that is, the highest order bits of two bytes are
erroneous. Then for I = 1 and r = 1, the value of 2’(Z -I- r) ! / l ! r !
is 2K = 0 (mod M). The error is undetected when the errone:
ous bits are only (I + 1) = 2 bytes apart! Although the situa-
tion improves slightly for largerR, it is clear that two’s comple-

TABLE I

A TYPICAL CRC, THE ONE’S COMPLEMENT CHECKSUM, AND
A COMPARISON OF THE ERROR-DETECTING PROPERTIES OF

THE TWO’S COMPLEMENT CHECKSUM WHEN TWO 8-BIT
CHECK BYTES ARE USED

Ones- Twos-
CRC co&ii&ent co&i&nt

Fract ion of a l l errors undetected .001526% .001538% .0015263
Fract ion o f 16-bit burst errors

S ing le b i t e r rors undetected.
undetected none .000019%

none
none

Minimum separation of undetected
none none

double b i t e r r o r s 65535 2040 16

,. ment is entirely inadequate with regard to the property under
consideration and can be used in the checksum algorithm
only if one regards the property as unimportant. Further con-
sideration is given only to one’s complement, where M (which
equ& ZK - 1) is not divisible by 2 . This means that 2b can
be divided out of the condition for nondetectability, which
becomes (I + r)!/Z!r! = 0 (mod M) for 0 < r < R.

For r = 1, this condition becomes (I -I- 1) = 0 (mod M), and
the least value satisfying it is I = M - 1. So, for R 2 2 the spac-
cing between the erroneous bits must be at least (I 4- 1) = M
bytes or K(2K - 1) bits. This is smaller than the spacing
2KR - 1 achieved by a suitable CRC for any R > 2 . In the
important case K = 8, R = 2 , the spacing is 2040 bits (check-
sum) versus 65 535 bits (CRC), a ratio of about 32. Neverthe-
less, the checksum provides a substantial spacing that should
be quite adequate in many applications.

For r = 2, the nondetectability condition becomes (2 -l-
1) (2 + 2) / 2 = 0 (mod M), which (like the condition for r = 1)
is satisfied for I = M - 1, because 2 does not divide (I + 1) =
M. So, having three check bytes (R = 3) is no better with
regard to spacing than having two, Continuing to larger I (and
R) may produce a gradual improvement. For example, in the
case K = 8, where M = 255 is divisible by 3, the r = 3 condi-
tion forces the spacing up by a factor of 3 to 61 20 bits. Full
analysis of the matter would require delving further into the
theory of numbers than seems worth the effort, because the
improvement in spacing does not seem to be great enough to
be a good ieason for using additional check bytes, and in any
event two check bytes is the conventional choice. In summary,
the following has been proven.

Theorem 4: The one’s complement checksum with at least
two check bytes detects all double-bit errors, provided that
the erroneous bits are spaced by less than K(2K - 1) bits,
where K is the number of bits in a byte. (This is a smaller
spacing than that achieved by a suitable CRC.)

VIII. CONCLUSION

One’s complement checksum, while not quite as good at
error detection as a suitable CRC with regard to the properties
examined, makes a very respectable showing (see summary in
Table I). Also, since its computation involves no table look-up
and only a few (for 16-bit checksums, two) additions per 8-
bit byte transmitted, it is more efficiently implemented in
software (or firmware) on typical processors than is a CRC.
Overall it represents a very reasonable tradeoff between effec-
tiveness and efficiency, which should make it appropriate for
use in many situations. It has been implemented successfully
in connection with SCULL, a link-level communication proto-
col 131 used in the Octopus computer network at the Lawrence
Livermore National Laboratory.

252 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-30, NO. 1, JANUARY 1982

REFERENCES undetectable information transmission errors and its tradeoff
[I] W, peterson and D, B ~ ~ ~ ~ , ~ c ~ y c ~ i c code for emor detection,” against transmission efficiency represent critical parameters

 roc. IRE, vol. 49, p. 228, Jan. 1961; also, W. Peterson, Error for assessing the suitability of the chosen protocol. This analy-
Correcring Codes. Cambridge, MA: MIT Press, 1961. sis is restricted to assessments of undetectable information

[2] S . Wecker, “A table-lookup algorithm for software computation of transmission (“residual in HDLC pro- cyclic redundancy check (CRC),” Digital Equipment Corp.,
Maynard, MA, 1974. tocols.

[3] J . Fletcher, “Serial communication protocol simplifies data
transmission and verification,” Comput. Design, p. 77, July 1978.

Message Error Detecting Properties of HDLC Protocols

G. FUNK

Abstract-Upgraded requirements for data integrity and data
efficiency in real-time process control applications necessitate critical
investigations on existing standard data transmission conventions,
such as the HDLC (high level data link control) protocol.

It is shown that a single bit error within an ordinary HDLC frame
may cause an undetectable message error at the receiver. Further
proposals for using modified HDLC protocols which guarantee the
detection of single bit errors fail to detect double bit errors within a
frame. Refined assessments for corresponding nondetectable message
error probabilities are based on bit sequence probabilities in HDLC
frames which differ slightly from bit sequences in original text fields
due to the “bit escaping mechanism” required by the HDLC protocol.

SUMMARY

An investigation of the suitability of various standard com-
munication protocols for telecontrol applications was pub-
lished by the author in the Proceedings on Communications,
EUROCON ’77. Since then the particular question of justify-
ing the application of HDLC protocols, in which single bit er-
rors may cause undetectable message errors, in real-time proc-
ess control communication has been discussed intensively.
Proposals for improving the error detecting properties of
HDLC protocols in order to achieve data integrity and ef-
ficiency figures required in process control applications
were analyzed by various experts. This paper summarizes
basic results of these efforts.

I. INTRODUCTION
Many investigations into the performance of standardized

data transmission protocols consider relations between infor-
mation throughput, protocol parameters, and probabilities for
detected message errors. The rate of nondetectable informa-
tion errors in the transmission link may be considered negligible
in some applications, or it is assumed that plausibility or other
checks in the user layer are able to recover these errors.

However, in process control applications where short, ur-
gent event-initiated real-time information prevails, the rate of

A . Single Bit Errors Cause Undetectable Message Errors

The HDLC (high level data link control) protocol [I]
uses the “FLAG” character: 0 1 1 1 1 1 1 0 as a frame de-
limiter. This bit pattern is excluded from the message frame
between a leading and a trailing FLAG character by the “bit
escaping mechanism.” The transmitter inserts a “0” bit to
the message bits, whenever five succeeding “1” bits occur in
the arbitrary (“bit-oriented”) text. The receiver eliminates
the inserted “0” bits by discarding the “0” bits which follow
five adjacent “1” bits. The end of a variable frame length is
recognized in the receiving station by the trailing FLAG
character.

The 16-bit frame check sequence (FCS) which terminates
the frame is designed for detecting all single, double, and three
bit error patterns within a frame (Hamming distance 4).

However, a single bit error may generate a spurious FLAG
within a message frame. This means that a transmitted frame
of B octets is received as two frames of totally B - 1 octets. If
this error occurs and if the 16 bits ahead of the spurious FLAG
are by chance a correct frame check sequence, an undetectable
message error is received, as shown in Fig. 1.

The probability of this event is calculated in the next sec-
tion.

11. PROBABILITY OF SPURIOUS FLAG’S IN BIT-
ORIENTED FRAMES

A. Coarse Assessment of Occurrence of Spurious FLAG’S

The first publication on this topic [2] estimates the proba-

The bit escaping mechanism excludes 8 bit patterns from
bility of spurious FLAG’s in the following way.

256 possible octets. For the remaining 248 octets of the type

position: 1 2 3 4 5 6 7 8

octet: 0 1 1 1 0 1 1 0

bit error:

FLAG: 0 1 1 1 1 1 1 0
$

the leading “0,” all “l’s,’’ and the trailing “0” have to be trans-
mitted error free, while the “0’s” in the positions 2 to 7 have
to be affected by bit errors in order to generate a FLAG octet.

In an assumed, memoryless, binary, symmetric channel
model each bit position is inverted independently with the bit
error probability p and is received correctly with the probability
4 (4 < I - p , where the < sign applies to binary symmetric
channels subject to erasure of bits).

With these simplified model assumptions [21 calculates the
probability of spurious FLAG’s to be

Paper approved by the Editor for Data Communication Systems of
the IEEE Communications Society for publication without oral presen- P(FLAG) = (1 /248)q2 ((;) P 4 5 + (;)p244 + ... + P 6)
tation. Manuscript received February 11, 1981; revised May 27, 1981.

Baden, Switzerland. P(FLAG) = (1/248)q2(1 - q 6) for 4 = 1 - p
The author is with BBC Aktiengesellschaft Brown, Boveri & Cie.,

0090-6778/82/0100-0252$00.75 @ 1982 IEEE

