
Serial Port Programming in Windows and Linux

Maxwell Walter

November 7, 2003

Abstract

While devices that use RS−232 and the serial port to
communicate are becoming increasingly rare, it is still
an important skill to have. Serial port programming,
at its most basic level, consists of a series of steps
regardless of the operating system that one is oper-
ating on. These steps are opening the port, configur-
ing the port, reading and writing to the port, and fi-
nally, closing the port. It is possible then to create an
API that contains the functions necessary to success-
fully communicate with the serial port. With a single
header file that contains all the functions necessary to
communicate over a serial port, the implementation
details can remain platform dependent as a library
that can then be compiled and maintained separately
for each operating system. The actual application can
then use the common header file as its interface to the
serial port. This creates a cross-platform serial inter-
face allowing the creation of code that is more easily
portable across operating systems. In this document
the functions and steps necessary to use the serial
port are detailed, and at the end of this document an
example cross-platform header file is provided.

Keywords: Serial Port, Programming, Linux, Win-
dows

1 Introduction

The advent of USB has caused a significant decline
in the number of devices that communicate using
RS−232, and many motherboards today ship with-
out serial ports. This does not mean, however, that
serial port programming is no longer a necessary or
relevant skill to posses. Many important and useful
devices still in use today date back to pre-USB times,
and there are still some devices that continue to use
the RS−232 protocol for communication. Also, be-
cause there are far fewer devices that communicate
using RS−232, fewer people are exposed to it, and
thus fewer people learn how to use it, making it an
even more valuable skill.

Serial port programming requires API’s provided
by the underlying operating system to communicate
with the hardware, making serial port programming
operating system dependent and not very portable.
However, because communicating with the serial port
itself requires few steps, a library with a common API
can be created and separate versions maintained for
different operating systems. The goal of this docu-
ment is to develop an operating system independent
class allowing the creation of portable code that uti-
lizes the serial port.

2 RS−232 Overview

The RS−232 protocol was originally designed in 1969
by the Electronic Industries Association (EIA) as a
general method of data transmission between two de-
vices. They wanted to create a specification that
would be free of transmission errors while being sim-
ple enough that it would be adopted by many de-
vice manufactures. The protocol that they developed
specified signal levels, timing, mechanical plugs, and
information control protocols. The RS−232 spec-
ification has gone through three major milestones,
namely:

• 1969: The third version of the RS−232 protocol
(originally called RS−232−C) was adopted as a
standard by the industry.

• 1987: EIA created a new version of the standard
called EIA-232-D.

• 1991: EIA and Telecommunications Industry
Association created a new version of the stan-
dard that they called EIA/TIA-232-E. Most
called the standard RS−232−C or simply
RS−232.

Other specifications have been created that aim to
remove defects inherent in the original RS−232 spec-
ification including:

• RS−422: Allows a line impedance of up to 50Ω

1

• RS−423: Minimum line impedance of 450Ω

• RS−449: High rate of communication speed us-
ing a 37 pin plug

[2] [3]

3 Serial Port Programming

There are four operations that must happen in proper
order to successfully communicate over the serial
port. These are to open the serial port, configure
the serial port, read and write bytes to and from the
serial port, and close the serial port when the task has
been completed. It is important to check the return
codes at each stage to ensure that the task has been
completed, because failure at one stage means that
the next stage will fail as well. Sanity checking the
return codes is also good coding practice, and throw-
ing away important information can lead to program
errors that are difficult to trace.

The serial port is a bi-directional port meaning that
it can send data in both directions, and, because it
has separate pins for transmit and receive, a device
can send and receive data at the same time. Sending
and receiving data at the same time is called over-
lapped communication as opposed to non-overlapped,
or blocking communication. This paper will deal
exclusively with non-overlapped communication as
overlapped communication requires very complex ob-
jects such as threads, mutexes, and semaphores.
Also, non-overlapped communication is adequate in
many situations.

The two operating systems discussed here, Win-
dows and Linux, both have simple communication
API’s that facilitate communication over the serial
port. While certain tasks, such as opening and clos-
ing the serial port, are very similar, other tasks such a
configuring the serial port are very different. It is our
goal to create a single header file that provides a con-
sistent interface across multiple operating systems,
requiring only that the programmer link against the
object library for the operating system his program
is compiling on.

3.1 Opening the Serial Port

The first step that is necessary to communicate over
the serial port is to actually open the device. Under
both Windows and Linux, the serial port is treated as
a file, so to open the serial port one calls the functions

used to open a file. There are restrictions on the
parameters allowed when opening the file however,
and those will be discussed in the appropriate section
below. The options are operating system dependent.

3.1.1 Windows

The function used to open the serial port in the Win-
dows operating system is CreateFile() which is used
as follows:

HANDLE fileHandle;

fileHandle =

CreateFile(

//the name of the port (as a string)

//eg. COM1, COM2, COM4

gszPort,

//must have read AND write access to

//port

GENERIC_READ | GENERIC_WRITE,

//sharing mode

//ports CANNOT be shared

//(hence the 0)

0,

//security attributes

//0 here means that this file handle

//cannot be inherited

0,

//The port MUST exist before-hand

//we cannot create serial ports

OPEN_EXISTING,

//Overlapped/Non-Overlapped Mode.

//This paper will deal with

//non-overlapped communication.

//To use overlapped communication

//replace 0 with

//FFILE_FLAG_OVERLAPPED

0,

//HANDLE of a template file

//which will supply attributes and

//permissions. Not used with

//port access.

0);

CreateFile() returns a HANDLE object that can then
be used to access the port. If CreateFile() fails, the
HANDLE object that is returned is invalid and va-
lidity can be tested using the following code:

if (fileHandle == INVALID_HANDLE_VALUE) {

//error handling code here

}

2

Provided that the serial port is successfully opened
the next step is to configure it to the specific appli-
cation.

3.1.2 Linux

Opening the serial port in Linux is performed in much
the same way as it is in Windows, using the open()
command. One caveat to Linux is that the user ID
that the program is running under must be allowed
to access the serial port, either by giving the user
permission to the serial port, or by changing the per-
missions of the program to allow access to the serial
port. Code to open the serial port under Linux can
is as follows.

int fd =

open(

//the name of the serial port

//as a c-string (char *)

//eg. /dev/ttys0

serialPortName,

//configuration options

//O_RDWR - we need read

// and write access

//O_CTTY - prevent other

// input (like keyboard)

// from affecting what we read

//O_NDELAY - We don’t care if

// the other side is

// connected (some devices

// don’t explicitly connect)

O_RDWR | O_NOCTTY | O_NDELAY

);

if(fd == -1) {

//error code goes here

}

The serial port is now opened and, in this case, fd is
a handle to the opened device file. As can be seen, if
the open() function call fails, the device handle is set
to −1 and by checking the handle against this value
one can determine if an error occurred.

3.2 Configuring the Serial Port

The next action that must take place before data can
be written to or read from the serial port is to appro-
priately configure the port. Port configuration op-
tions include the communication speed, data word
size, parity, flow control, number of stop bits. There
are other settings that can be used but will not be dis-
cussed here. The communication speed is the speed

at which the serial port can send and receive data
and is specified in units of BAUD. Common speeds
are 9600 BAUD, 19200 BAUD, and the current max-
imum of standard serial ports is 115200 BAUD. Data
word size is the size of a piece of the data, usually
a word, or eight bits. Parity is the type of parity
used, either even, odd, or none, and flow control and
the number of stop bits are used to synchronize the
communication.

It is also necessary to set the read and write time-
outs for non-overlapped communication, because in
non-overlapped communication the read and write
operations block, or do not return, until there is data
available to return. So if a read or write function
is called and there is no data available or no device
listening, the program will hang. Setting the read
and write timeouts ensure that, if there is no device
to communicate with the read and write operations
will return a failure instead of blocking. It is im-
portant to note that while it is possible to set the
wait timeout, unless the host is expecting acknowl-
edgment from the device there will be no write time-
outs. Non-overlapped I/O with no flow-control uses
no acknowledgment, so for the purpose of this paper
the wait timeouts are not needed.

3.2.1 Windows

In Windows, setting up the serial port requires three
steps.

1. Create a DCB object and initialize it using the
function BuildCommDCB().

2. Set the serial port settings using the initialized
DCB object using the function SetCommState().

3. Set the size of the serial port read and write
buffers using SetupComm().

Code to accomplish this can be found below.

DCB dcb; //create the dcb

//first, set every field

//of the DCB to 0

//to make sure there are

//no invalid values

FillMemory(&dcb, sizeof(dcb), 0);

//set the length of the DCB

dcb.DCBlength = sizeof(dcb);

//try to build the DCB

3

//The function takes a string that

//is formatted as

//speed,parity,data size,stop bits

//the speed is the speed

// of the device in BAUD

//the parity is the

// type or parity used

//--n for none

//--e for even

//--o for odd

//the data size is the number of bits

// that make up a work (typically 8)

//the stop bits is the

// number of stop bits used

// typically 1 or 2

if(!BuildCommDCB("9600,n,8,1", &dcb)) {

return false;

}

//set the state of fileHandle to be dcb

//returns a boolean indicating success

//or failure

if(!SetCommState(filehandle, &dcb)) {

return false;

}

//set the buffers to be size 1024

//of fileHandle

//Also returns a boolean indicating

//success or failure

if(!SetupComm(fileHandle,

//in queue

1024,

//out queue

1024))

{

return false;

}

Next, the timeouts of the port must be set. It is im-
portant to note that if the timeouts of a port are not
set in windows, the API states that undefined results
will occur. This leads to difficulty debugging because
the errors are inconsistent and sporadic. To set the
timeouts of the port an object of type COMMTIME-
OUTS must be created and initialized and then ap-
plied to the port using the function SetCommTime-
outs(), as the code below demonstrates.

COMMTIMEOUTS cmt; //create the object

//the maximum amount of time

//allowed to pass between

//the arrival of two bytes on

//the read line (in ms)

cmt.ReadIntervalTimeout = 1000;

//value used to calculate the total

//time needed for a read operation

//which is

// (num bytes to read) * (timeout)

// in ms

cmt.ReadTotalTimeoutMultiplier = 1000;

//This value is added to

//the previous one to generate

//the timeout value

//for a single read operation (in ms)

cmt.ReadTotalTimeoutConstant = 1000;

//the next two values are the same

//as their read counterparts, only

//applying to write operations

cmt.WriteTotalTimeoutConstant = 1000;

cmt.WriteTotalTimeoutMultiplier = 1000;

//set the timeouts of fileHandle to be

//what is contained in cmt

//returns boolean success or failure

if(!SetCommTimeouts(fileHandle, &cmt)) {

//error code goes here

}

Provided all the configuration functions returned suc-
cess, the serial port is now ready to be used to send
and receive data. It may be necessary, depending
on the application, to re-configure the serial port. It
may be necessary, for instance, to change the speed
of the port, or the timeout values in the middle of an
application.

3.2.2 Linux

Configuration of the serial port under Linux takes
place through the use the termios struct, and consists
of four steps:

1. Create the struct and initialize it to the current
port settings.

2. Set the speed attribute of the struct to the de-
sired port speed using the functions cfsetispeed()
and cfsetospeed(). While these functions allow
different reading and writing speed, most hard-
ware and system implementations do not allow
these speeds to be different.

3. Set the timeouts of the port.

4

4. Apply the settings to the serial port.

While opening the serial port is generally easier in
Linux than it is in Windows, configuring it is harder
as there is more bit-masking involved to change a
single option. While there are convenient functions
that can be used to set the speed of the port, other
options, like parity and number of stop bits, are set
using the c cflag member of the termios struct, and
require bitwise operations to set the various settings.
Linux is also only capable of setting the read time-
out values. This is set using the c cc member of the
termios struct which is actually an array indexed by
defined values. Please see the code below for an ex-
ample.

//create the struct

struct termios options;

//get the current settings of the

// serial port

tcgetattr(fd, &options);

//set the read and write speed to

//19200 BAUD

//All speeds can be prefixed with B

//as a settings.

cfsetispeed(&options, B19200);

cfsetospeed(&options, B19200);

//now to set the other settings

//here we will have two examples.

//The first will be no parity,

//the second will be odd parity.

//Both will assume 8-bit words

/**********************************

*

* no parity example

*

**********************************/

//PARENB is enable parity bit

//so this disables the parity bit

options.c_cflag &= ~PARENB

//CSTOPB means 2 stop bits

//otherwise (in this case)

//only one stop bit

options.c_cflag &= ~CSTOPB

//CSIZE is a mask for all the

//data size bits, so anding

//with the negation clears out

//the current data size setting

options.c_cflag &= ~CSIZE;

//CS8 means 8-bits per work

options.c_cflag |= CS8;

/**********************************

*

* odd parity example

*

**********************************/

//enable parity with PARENB

options.c_cflag |= PARENB

//PARAODD enables odd parity

//and with ~PARAODD for even parity

options.c_cflag |= PARODD

//Only one stop bit

options.c_cflag &= ~CSTOPB

//clear out the current word size

options.c_cflag &= ~CSIZE;

//we only have 7-bit words here

//because one bit is taken up

//by the parity bit

options.c_cflag |= CS7;

//Set the timeouts

//VMIN is the minimum amount

//of characters to read.

options.c_cc[VMIN] = 0;

//The amount of time to wait

//for the amount of data

//specified by VMIN in tenths

//of a second.

optiont.c_cc[VTIME] = 1;

//CLOCAL means don’t allow

//control of the port to be changed

//CREAD says to enable the receiver

options.c_cflag |= (CLOCAL | CREAD);

//apply the settings to the serial port

//TCSNOW means apply the changes now

//other valid options include:

// TCSADRAIN - wait until every

// thing has been transmitted

// TCSAFLUSH - flush buffers

// and apply changes

if(tcsetattr(fd, TCSANOW, &options)!= 0) {

//error code goes here

}

3.3 Reading and Writing

After the port is open and configured, a program can
send and receive data through it. In both Windows
and Linux the serial port is treated as a file, and
the file read and write operations are used to send

5

data to and from the port. These operations differ
from standard file input/output operations in that
the number of bytes to be read or written and the
number of bytes actually read or written are very
important.

It is a good idea to compare the number of bytes
that were actually read or written to the number of
bytes that were supposed to have been read or writ-
ten to insure the correctness of the program and the
accuracy of the data.

3.3.1 Windows

Reading and writing to a serial port in Windows is
very simple and similar to reading and writing to a
file. In fact, the functions used to read and write
to a serial port are called ReadFile() and WriteFile
respectively. When reading or writing to the serial
port, the programmer provides a pointer to a buffer
containing the number of words to be written and the
size of the buffer. The system then returns the actual
number of words that have been read or written. The
read and write functions return a boolean value, but
this value does not relate to the success or failure of
the operation. Only by checking the actual number
of bytes read or written can the actual success of the
operation be ascertained. Code to read and write to
a serial port can be found below.

/******************************

*

* Reading from a file

*

*******************************/

//the amount of the data actually

//read will be returned in

//this variable

DWORD read = -1;

ReadFile(

//the HANDLE that we

//are reading from

fileHandle,

//a pointer to an array

//of words that we

//want to read

data,

//the size of the

//array of values to

//be read

size,

//the address of a DWORD

//that the number of words

//actually read will

//be stored in

&read,

//a pointer to an

//overlapped_reader struct

//that is used in overlapped

//reading. NULL in out case

NULL);

/******************************

*

* Writing to a file

*

*******************************/

//the amount of the data actually

//written will be returned in

//this variable

DWORD write = -1;

ReadFile(

//the HANDLE that we

//are writing to

fileHandle,

//a pointer to an array

//of words that we

//want to write

data,

//the size of the

//array of values to

//be written

size,

//the address of a DWORD

//that the number of words

//actually written will

//be stored in

&read,

//a pointer to an

//overlapped_reader struct

//that is used in overlapped

//writing. NULL in out case

NULL);

Because we are using non-overlapped input/output
operations the ReadFile() and WriteFile() operations
will block until the requested data is either received
or the operation times out.

3.3.2 Linux

Reading and writing data under Linux is just as easy
as it is under Windows and involves calling the read()
and write() functions. The same rule of thumb of
checking the number of requested words to read or
write and the actual number of words that were read
or written applies.

6

/**********************************

Reading from the Serial Port

***********************************/

//fd is the file descriptor to the

// serial port

//buf is a pointer the array we want to

// read data into

//bufSize is the amount of data that we

// want to read in

int wordsRead = read(fd, buf, bufSize);

/**********************************

Writing to the Serial Port

***********************************/

//write data to the serial port

//fd is the file descriptor of

// the serial port

//buf is a pointer to the data that

// we want to write to the serial

// port

//bufSize is the amount of data that we

// want to write

int wordsWritten = write(fd, buf, bufSize);

3.4 Closing the Serial Port

Closing the port is very similar to opening it, and
the system call used to close a file is also used to
close the port. It is not strictly necessary to close the
port before closing the application because modern
operating systems like Microsoft Windows and Linux
reclaim all resources used by the application. It is,
however, good practice to explicitly free all resources
used so as to not rely on methods that can’t be con-
trolled. Also, if an application will continue to reside
in memory after it is finished using the port, like a
daemon, then it is necessary to close the port. Oth-
erwise no other application would be able to use the
port while the other application has control of it. For
this reason, explicitly closing the port when it is no
longer in use is a good habit to use.

3.4.1 Windows

Closing the serial port is the easiest task under the
Windows operating system. It consists of calling a
single function, CloseFile(), and checking the return
value. Code that demonstrates this can be found be-
low.

//Close the fileHandle, thus

//releasing the device.

if(!CloseFile(fileHandle)) {

//error code goes here

}

3.4.2 Linux

Closing the serial port on Linux involves a single call
to the close() system function, as the following code
demonstrates.

//close the serial port

if(close(fd) == -1) {

//error code goes here

}

4 Putting it all Together

Now that we have an understanding of the necessary
steps that must be completed to communicate with
the serial port in both Windows and Linux, it is time
to create our cross-platform API to facilitate easily
portable serial port code. Based on the steps outlined
above, our API will require, at minimum, six func-
tions. Two functions to open and to close the serial
port, one function to set the serial port parameters,
another to set the timeout values, and two functions
to read and write to the serial port. The header file
of our proposed class can be found below.

7

#ifndef __CAPSTONE_CROSS_SERIAL_PORT__

#define __CAPSTONE_CROSS_SERIAL_PORT__

/**

This header defines a cross-platform serial interface class

that was developed over the course of the ECE capstone class.

It is intended for demonstration purposes only and, while useful,

is not sufficient for most large applications. While we use these

functions in our project, they most likely do not apply

to all applications, and as always, Your Mileage May Vary (YMMV)

With that in mind, I hope that at the very least, you find this useful.

***/

class crossPlatformSerial {

/**

Default constructor: create an instance of our serial interface

object.

Parameters: None, though it could be convenient to have default

settings specified here as well as possibly a default port name.

Returns: Nothing (it is a constructor)

***/

crossPlatformSerial();

/**

Default deconstructor: delete an instance of out serial interface

object.

Parameters: None (it is a de-constructor)

Returns: Noting (it is a de-constructor)

***/

~crossPlatformSerial();

/**

open: opens the serial port using port-name provided.

Parameters:

portName: an array of chars containing a NULL terminated string

that is the port name that we want to open.

eg. COM1, COM2, COM4

Returns: a boolean indicating success or failure

***/

bool open(char * portName);

/**

close: closes the serial port

Parameters: None. None are needed.

Returns: a boolean indicating success or failure

***/

bool close();

/**

setSettings: Set the settings of the serial port interface. Should

be called after the port is opened because otherwise settings

could be lost.

8

Parameters:

speed: the desired speed of the serial port

wordSize: the size of the data word in bits

stopBits: the number of stop bits

parity: parity to be used. One of

’n’ - None

’e’ - Even

’o’ - Odd

Returns: boolean indicating success or failure

***/

bool setSettings(int speed, int wordSize,

int stopBits, char parity);

/***

setTimeouts: set the read and write timeouts of the serial port

Parameters:

readTimeout: The amount of time to wait for a single word

read to timeout

writeTimeout: The amount of time to wait for a single word

write to timeout

Returns: boolean indicating success or failure

**/

bool setTimeouts(int readTimeout, int writeTimeout);

//NOTE:

// These readBuf and writeBuf functions assume word

// sizes of 8 bits. If that is not the case char *

// cannot be used as the storage medium as chars are

// 8-bits in size.

/**

readBuf: read in a buffer of words

Parameters:

buf: The buffer to read words into

bfSize: the number of words to read. This should be less than

or equal to the size of buf

Returns: the number of words actually read

***/

int readBuf(char * buf, int bufSize);

/**

writeBuf: write out a buffer of words

Parameters:

buf: The buffer to write words from

bfSize: the number of words to write. This should be less than

or equal to the size of buf

Returns: the number of words actually written

***/

int writeBuf(char * buf, int bufSize);

};

#endif

9

This class demonstrates the minimum necessary to
create a useful serial interface. These function stubs
can be filled in with the code provided previously in
the paper under the appropriate sections. A sepa-
rate binary library would need to be maintained for
each operating system that the code is intended to
run on, though maintaining a library is significantly
easier than maintaining the large code-base of an ap-
plication.

In practice, there are other things that are needed
such as a boolean flag indicating whether or not the
serial port is currently open, and some method of
getting the current settings of the serial port device.
It is also important to realize that this API applies
only to non-overlapped communication because over-
lapped communication requires complicated operat-
ing system features such as threads, mutexes, and
semaphores making cross-platform operation much
harder.

5 Conclusion

This document has demonstrated the code necessary
to communicate using a serial port on two different
operating systems, namely Microsoft Windows and
Linux. It has also provided a small amount of infor-
mation on the history of RS−232 as well as a design
for a simple cross-platform serial port interface API.

This API does have limitations in that it only sup-
ports non-overlapped I/O and does not support the
advanced features that the operating systems pro-
vide. It would be possible to create a common header
file that includes overlapped communications by also
creating cross-platform libraries of the other compo-
nents that one needs such as threads, mutexes, and
semaphores. Again, there would always be something
that the operating system is capable of that the li-
brary will not be able to support. In gaining the con-
venience of a cross-platform interface, one loses the
power associated with interfacing with the operating
system directly.

References

[1] Michael R. Sweet, Serial Programming
Guide for POSIX Operating Systems, 1994,
http://www.easysw.com/∼mike/serial/
serial.html.

[2] fCoder Group International, RS-232-C History,
http://www.lookrs232.com/rs232/
history rs232.htm.

[3] Wikipedia, RS-232, http://en.wikipedia.org/
wiki/RS-232.

[4] Allen Denver, Serial Communications in Win32,
Dec. 11, 1995, MSDN April 2003.

10

