

Software Defined Networking
with OpenFlow

Get hands-on with the platforms and development tools
used to build OpenFlow network applications

Siamak Azodolmolky

BIRMINGHAM - MUMBAI

Software Defined Networking with OpenFlow

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1211013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-872-6

www.packtpub.com

Cover Image by Mrunal Gawade (mrunal.gawade@gmail.com)

Credits

Author
Siamak Azodolmolky

Reviewers
Prof. Dr. Christian Esteve
Rothenberg

Seungwon Shin

Acquisition Editor
Julian Ursell

Commissioning Editor
Manasi Pandire

Technical Editors
Manan Badani

Nadeem Bagban

Tanvi Bhatt

Pankaj Kadam

Pramod Kumavat

Sonali Vernekar

Project Coordinator
Akash Poojary

Proofreader
Faye Coulman

Linda Morris

Indexer
Hemangini Bari

Graphics
Ronak Dhruv

Abhinash Sahu

Production Coordinator
Melwyn D’sa

Cover Work
Melwyn D’sa

About the Author

Siamak Azodolmolky received his Computer Engineering degree from Tehran
University and his first MSc. degree in Computer Architecture from Azad University
in 1994 and 1998 respectively. He was employed by Data Processing Iran Co. (IBM
in Iran) as a Software Developer, Systems Engineer, and as a Senior R&D Engineer
during 1992-2001. He received his second MSc. degree with distinction from Carnegie
Mellon University in 2006. He joined Athens Information Technology (AIT) as a
Research Scientist and Software Developer in 2007, while pursuing his PhD degree. In
August 2010, he joined the High Performance Networks research group of the School
of Computer Science and Electronic Engineering (CSEE) of the University of Essex as a
Senior Research Officer. He received his PhD (with ‘cum laude’) from the Universitat
Politécnica de Catalunya UPC in 2011. He has been the technical investigator of
various national and EU funded projects. Software Defined Networking (SDN) has
been one of his research interests since 2010, in which he has been investigating the
extension of OpenFlow towards its application in core transport (optical) networks.
He has published more than 50 scientific papers in international conferences, journals,
and books. Currently, he is with Gesellschaft für Wissenschaftliche Datenverarbeitung
mbH Göttingen (GWDG) as a Senior Researcher and has lead SDN related activities
since September 2012. He is a professional member of ACM and a senior member
of IEEE.

Whenever I reach the end of a book production, once again I realize
that nobody is perfect. I would like to thank the technical reviewers
for providing me with fruitful and constructive feedback. Any
remaining errors are, of course, my own. I would also like to thank
the Packt Publishing team who has been really supportive in getting
this book off the ground. The knowledge, support, and experience
of many colleagues in the SDN community have been instrumental
in filling the gaps in my understanding of SDN. This book was not
simply possible without them.

Finally, sincere and especially heartfelt thanks go out to my son,
Parsa Azodolmolky. His patience during writing time, while being
away from me is greatly appreciated. I love you Parsa.

About the Reviewers

Christian Esteve Rothenberg, has been an Assistant Professor at the University
of Campinas (UNICAMP) since August 2013, where he received his PhD in
Electrical and Computer Engineering in 2010. From 2010 to 2013, he worked as a
Senior Research Scientist in the areas of IP systems and networking at CPqD R&D
Center in Telecommunications, Campinas, Brazil. Christian was the technical lead
of OpenFlow/SDN activities that resulted in RouteFlow and the first open source
OpenFlow 1.2 and 1.3 software toolkits.

He holds a Telecommunication Engineering degree from the Technical University
of Madrid (ETSIT-UPM), Spain, and an M.Sc. (Dipl. Ing.) degree in Electrical
Engineering and Information Technology from the Darmstadt University of
Technology (TUD), Germany in 2006. Christian holds two international patents
and has published in scientific journals and top-tier networking conferences, such
as SIGCOMM and INFOCOM. Since April 2013, Christian has been working as a
Research Associate of the Open Networking Foundation (ONF).

Seungwon Shin has recently graduated in Computer Engineering from the
Texas A&M University. His research topic was Software Defined Networking
(SDN) Security. He has published more than 15 papers in academia and developed
open source SDN security tools, FRESCO and FortNOX (and also, SE-FloodLight).
Currently, he is working at Atto-Research, Korea, a startup company developing
robust and secure OpenFlow controllers.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital
book library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Introducing OpenFlow	 7

Understanding Software Defined Networking – OpenFlow flavor	 7
Activities around SDN/OpenFlow	 8
Building Blocks	 9
OpenFlow messages	 15

Controller-to-switch	 16
Features	 17
Configuration	 17
Modify-State	 17
Read-State	 18
Send-Packet	 18
Barrier	 19

Symmetric messages	 19
Hello	 19
Echo	 19
Vendor	 19

Asynchronous messages	 19
Packet-in	 20
Flow-Removal	 20
Port-status	 20
Error	 20

Northbound interface	 21
Summary	 21

Chapter 2: Implementing the OpenFlow Switch	 23
OpenFlow reference switch	 23

Asynchronous messages	 26
Symmetric Messages	 27

Hardware Implementations	 27
Software-based switches	 28

Table of Contents

[ii]

OpenFlow laboratory with Mininet	 29
Getting started with Mininet	 30
Experimenting with Mininet	 33

Summary	 37
Chapter 3: The OpenFlow Controllers	 39

SDN controllers	 39
Existing implementations	 41

NOX and POX	 42
Running a POX application	 43
NodeFlow	 49
Floodlight	 52

OpenDaylight	 53
Special controllers	 54

Summary	 54
Chapter 4: Setting Up the Environment	 55

Understanding the OpenFlow laboratory	 55
External controllers	 59
Completing the OpenFlow laboratory	 60

OpenDaylight	 65
ODL controller	 65
ODL-based SDN laboratory	 67

Summary	 71
Chapter 5: "Net App" Development	 73

Net App 1 – an Ethernet learning switch	 74
Building the learning switch	 78

Net App 2 – A simple firewall	 82
Net App 3 – simple forwarding in OpenDaylight	 85
Summary	 88

Chapter 6: Getting a Network Slice	 89
Network virtualization	 89
FlowVisor	 91

FlowVisor API	 92
FLOW_MATCH structure	 93
Slice actions structure	 94

FlowVisor slicing	 95
Summary	 101

Table of Contents

[iii]

Chapter 7: OpenFlow in Cloud Computing	 103
OpenStack and Neutron	 103
OpenStack Networking Architecture	 106
Neutron plugins	 110
Summary	 113

Chapter 8: Open Source Resources	 115
Switches	 115

Open vSwitch	 116
Pantou	 118
Indigo	 118
LINC	 119
XORPlus	 119
OF13SoftSwitch	 120

Controllers	 121
Beacon	 121
Floodlight	 121
Maestro	 123
Trema	 123
FlowER	 124
Ryu	 124

Miscellaneous	 125
FlowVisor	 125
Avior	 126
RouteFlow	 127
OFlops and Cbench	 128
OSCARS	 129
Twister	 129
FortNOX	 130
Nettle	 130
Frenetic	 130
OESS	 131

Summary	 131
Index	 133

Preface
Decoupling the network control out of the networking devices is the common
denominator of Software Defined Networking (SDN). SDN is a recent paradigm shift
in computer networking, where network control functionality (also known as control
plane) is decoupled from data forwarding functionality (also known as data plane) and
furthermore the split control is programmable. The migration of control logic, which
used to be tightly integrated in networking devices (for example, Ethernet switches)
into accessible and logically centralized controllers, enables the underlying networking
infrastructure to be abstracted from an applications point of view. This separation
paves the way for a more flexible, programmable, vendor-agnostic, cost effective, and
innovative network architecture. Besides the network abstraction, SDN architecture
will provide a set of Application Programing Interfaces (APIs) that simplifies the
implementation of common network services (for example, routing, multicast, security,
access control, bandwidth management, traffic engineering, QoS, energy efficiency,
and various forms of policy management). As a result, enterprises, network operators,
and carriers gain unprecedented programmability, automation, and network control,
enabling them to build highly scalable, flexible networks that readily adapt to
changing business needs. OpenFlow is the first standard interface designed specifically
for SDN, providing high performance, granular traffic control across multiple
networking devices. This book looks at the fundamentals of OpenFlow, as one of
the early implementations of the SDN concept. Starting from OpenFlow switches
and controllers up to the development of OpenFlow-based network applications
(Net Apps), network virtualization, OpenFlow in Cloud Computing, and a summary
of active OpenFlow related open source projects are topics, which are covered in
this book. If you are still hungry for more, this book shows you how to do SDN
with OpenFlow.

Preface

[2]

What this book covers
Chapter 1, Introducing OpenFlow, introduces the OpenFlow and its role in the SDN
ecosystem and how it works in a computer network. This chapter shapes the required
knowledge prior to the actual setup of an experimental environment. The notion
of flow, flow forwarding, OpenFlow functions, what can OpenFlow tables do, and
features and limitations of OpenFlow are covered in this chapter.

Chapter 2, Implementing the OpenFlow Switch, covers the available implementations
of OpenFlow switches including hardware and software implementations.

Chapter 3, The OpenFlow Controllers, covers the role of OpenFlow controllers as a
control entity for OpenFlow switches and the provided API (that is, northbound
interface) for the development of OpenFlow-based Network Applications (Net Apps).

Chapter4, Setting Up the Environment, introduces the options for OpenFlow switches
and controllers. It also covers the environment for Net App development. This chapter
focuses on the installation of virtual machines (VMs) and tools (for example, Mininet
and Wireshark), which will be used in the next chapters for Net App development.

Chapter 5, "Net App" Development, covers developing of sample network applications
(for example, learning switch and firewall) to show how OpenFlow provides the
common ground for network application (Net App) development.

Chapter 6, Getting a Network Slice, covers the network slicing using OpenFlow and
FlowVisor. A setup will be planned and the reader can understand how to configure
and use a slice of the network using FlowVisor.

Chapter 7, OpenFlow in Cloud Computing, focuses on the role of OpenFlow in cloud
computing and in particular, the installation and configuration of OpenStack's Neutron
will be covered. Neutron is an incubated OpenStack project that provides network
connectivity as a service (NaaS) between interface devices (for example, vNICs or
virtual network interface cards), which are managed by other OpenStack services.

Chapter 8, Open Source Resources, explains and gives pointers to the important
open source projects that network engineers and/or administrators can utilize in
their production environment. These projects range from OpenFlow soft switches,
Controllers, virtualization tools, Orchestration tools, to simulation and testing utilities.

Preface

[3]

What you need for this book
This book assumes that you have some level of network experience and knowledge
such as TCP/IP, Ethernet, and broad networking concepts and some familiarity
with the daily operation of networks. You should have programming experience
in high-level programming and/or scripting languages (for example, C/C++,
Java, or Python). Experiences with virtual machines and other virtual networking
environments may also be useful. You will also need a computer with at least 1 GB
(preferably more than 2 GB) of main memory and at least 10 GB of free hard disk
space. A quite fast processor may speed up the boot time of virtual machines, and
a big monitor may help to manage multiple terminal windows. You also need an
Internet connection to download various utilities and VM images.

Who this book is for
Although this book covers the essential building blocks of OpenFlow and
software-defined networking with OpenFlow, it is designed as a tutorial guide,
and not a reference book. Network engineers, network administrators, systems
software developers, and anyone who is interested in knowing more about
OpenFlow, network application developers, are among the audiences of this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "If a
switch does not understand a vendor extension, it must send an OFPT_ERROR message
with a OFPET_BAD_REQUEST error type, and a OFPBRC_BAD_VENDOR error code".

A block of code is set as follows:

 class pyNetApp(Component):
 def __init__(self, ctxt):

 def learn_and_forward(self, dpid, inport, packet, buf, bufid):

 self.send_openflow(dpid, bufid, buf, openflow.OFPP_FLOOD,inport)

 if not packet.parsed:
 log.debug('Ignoring incomplete packet.')

Preface

[4]

 else:
 self.learn_and_forward(dpid, inport, packet, packet.arr, bufid)
 return CONTINUE

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

 attribs = {}
 attribs[core.IN_PORT] = inport
 attribs[core.DL_DST] = packet.dst

Any command-line input or output is written as follows:

apt-get install maven git openjdk-7-jre openjdk-7-jdk

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Go to File
and select Import Appliance".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Introducing OpenFlow
In order to understand the role of OpenFlow and its building blocks, and how it can
be used for OpenFlow-based network application development, it is important to
provide a brief introduction of OpenFlow and how it works. This chapter shapes
the required knowledge prior to the actual setup of SDN/OpenFlow-enabled
experimental and development environment. OpenFlow can be considered as one
of the early implementations of the SDN concept. Therefore, before going through
OpenFlow, it is worth giving a brief introduction to the SDN and the related
activities around it.

Understanding Software Defined
Networking – OpenFlow flavor
Software Defined Networking (SDN), often referred to as a revolutionary new idea in
computer networking, promises to dramatically simplify network control, management,
and enable innovation through network programmability. Computer networks are
typically constructed from a large number of network devices (such as switches,
routers, firewalls, and so on) with many complex protocols (software), which are
implemented and embedded on them. Network engineers are responsible for
configuring policies to respond to a wide range of network events and application
scenarios. They manually transform these high-level policies into low-level
configuration commands. These very complex tasks are often accomplished with
access to very limited tools. Thus, network management control and performance
tuning are quite challenging and error-prone tasks.

Another challenge is what network engineers and researchers refer to as Internet
ossification. Due to its huge deployment base and its impacts on different aspects of
our life, the Internet has become extremely difficult to evolve both in terms of its
physical infrastructure, along with its protocols and performance. As emerging and
demanding applications become more complex, the current status quo of the Internet
seems not to be able to evolve to address emerging challenges.

Introducing OpenFlow

[8]

The concept of programmable networks has been proposed as a way to facilitate
network evolution. In particular, SDN is a new networking paradigm, in which
the forwarding hardware (for example, specialized packet forwarding engines)
is decoupled from the control decisions (for example, the protocols and control
software). The migration of control logic, which used to be tightly integrated in the
networking devices (for example, Ethernet switches) into accessible and logically
centralized controllers, enables the underlying networking infrastructure to be
abstracted from the application's point of view. This separation provides a more
flexible, programmable, vendor-agnostic, cost efficient, and innovative network
architecture. Besides the network abstraction, the SDN architecture will provide a
set of Application Programing Interfaces (APIs) that simplifies the implementation
of common network services (for example, routing, multicast, security, access
control, bandwidth management, traffic engineering, QoS, energy efficiency, and
various forms of policy management). In SDN, the network intelligence is logically
centralized in software-based controllers (at the control plane), and network
devices become the simple packet forwarding devices (the data plane) that can be
programmed via an open interface. One of the early implementations of this open
interface is called OpenFlow.

The separation of the forwarding hardware from the control logic allows
easier deployment of new protocols and applications, straightforward network
visualization and management, and consolidation of various middle boxes
into software control. Instead of enforcing policies and running protocols on a
convolution of scattered devices, the network is reduced to simple forwarding
hardware and the decision-making network controller(s). The forwarding hardware
consists of the following:

1.	 A flow table containing flow entries consisting of match rules and actions
that take on active flows.

2.	 A transport layer protocol that securely communicates with a controller
about new entries that are not currently in the flow table.

Activities around SDN/OpenFlow
While OpenFlow has received a considerable amount of industry attention, it is worth
mentioning that the idea of programmable networks and decoupled control plane
(control logic) from data plane has been around for many years. The Open Signaling
Working Group (OPENSIG) initiated a series of workshops in 1995 to make ATM,
Internet, and mobile networks more open, extensible, and programmable. Motivated
by these ideas, an Internet Engineering Task Force (IETF) working group came up
with General Switch Management Protocol (GSMP), to control a label switch. This
group is officially concluded and GSMPv3 was published in June, 2002. The Active

Chapter 1

[9]

Network initiative proposed the idea of a network infrastructure that would be
programmable for customized services. However, Active Network never gathered
critical mass, mainly due to practical security and performance concerns. Starting
in 2004, the 4D project (www.cs.cmu.edu/~4D/) advocated a clean slate design that
emphasized separation between the routing decision logic and the protocols governing
the interaction between network elements. The ideas in the 4D project provided direct
inspiration for later works such as NOX (www.noxrepo.org), which proposed an
operating system for networks in the context of an OpenFlow-enabled network. Later
on in 2006, the IETF Network Configuration Protocol working group proposed
NETCONF as a management protocol for modifying the configuration of network
devices. The working group is currently active and the latest proposed standard was
published in June, 2011. The IETF Forwarding and Control Element Separation
(ForCES) working group is leading a parallel approach to SDN. SDN and Open
Networking Foundation share some common goals with ForCES. With ForCES, the
internal network device architecture is redefined as the control element is separated
from the forwarding element, but the combined entity is still represented as a single
network element to the outside world. The immediate predecessor to OpenFlow
was the Stanford's SANE/Ethane project (yuba.stanford.edu/sane, and yuba.
stanford.edu/ethane/), which, in 2006, defined a new network architecture for
enterprise networks. Ethane's focus was on using a centralized controller to manage
policy and security in a network.

A group of network operators, service providers, and vendors
have recently created the Open Networking Foundation (www.
opennetworking.org), an industrial driven organization, to promote
SDN and standardize the OpenFlow protocol. At the time of writing this,
the latest specification of OpenFlow was version 1.4. However, since the
widely implemented and deployed specification is OpenFlow 1.0.0 (Wire
Protocol 0x01), we will limit ourselves to the OpenFlow 1.0.0 in this book.

Building Blocks
The SDN switch (for instance, an OpenFlow switch), the SDN controller, and the
interfaces present on the controller for communication with forwarding devices,
generally southbound interface (OpenFlow) and network applications interface
(northbound interface) are the fundamental building blocks of an SDN deployment.
Switches in an SDN are often represented as basic forwarding hardware accessible
via an open interface, as the control logic and algorithms are offloaded to a controller.
OpenFlow switches come in two varieties: pure (OpenFlow-only) and hybrid
(OpenFlow-enabled).

Introducing OpenFlow

[10]

Pure OpenFlow switches have no legacy features or on-board control, and completely
rely on a controller for forwarding decisions. Hybrid switches support OpenFlow in
addition to traditional operation and protocols. Most commercial switches available
today are hybrids. An OpenFlow switch consists of a flow table, which performs
packet lookup and forwarding. Each flow table in the switch holds a set of flow
entries that consists of:

1.	 Header fields or match fields, with information found in packet header,
ingress port, and metadata, used to match incoming packets.

2.	 Counters, used to collect statistics for the particular flow, such as number
of received packets, number of bytes, and duration of the flow.

3.	 A set of instructions or actions to be applied after a match that dictates how
to handle matching packets. For instance, the action might be to forward a
packet out to a specified port.

The decoupled system in SDN (and OpenFlow) can be compared to an application
program and an operating system in a computing platform. In SDN, the controller
(that is, network operating system) provides a programmatic interface to the
network, where applications can be written to perform control and management
tasks, and offer new functionalities. A layered view of this model is illustrated
in the following figure. This view assumes that the control is centralized and
applications are written as if the network is a single system. While this simplifies
policy enforcement and management tasks, the bindings must be closely maintained
between the control and the network forwarding elements. As shown in the
following figure, a controller that strives to act as a network operating system must
implement at least two interfaces: a southbound interface (for example, OpenFlow)
that allows switches to communicate with the controller and a northbound interface
that presents a programmable API to network control and high-level policy
applications/services. Header fields (match fields) are shown in the following figure.
Each entry of the flow table contains a specific value, or ANY (* or wildcard, as
depicted in the following figure), which matches any value.

Chapter 1

[11]

Action

C
ounter

D
st M

AC

Ether Type

VLAN
 ID

VLAN
 ID

priority

D
st IP

S
rc

TC
P

/U
D

P
port

D
st

TC
P

/U
D

P
port

Net Apps

Northbound
interface

OpenFlow
controller(NOS)

Flow Table

OpenFlow
channel

OpenFlow switch

IP
 P

roto

IP
 ToS

 bits

Port

S
rc M

AC

S
rc IP

Flow Table comparable to an instruction set

C8:0A:
*

C
ounters

Header fields Actions

Port
1

Port
2

Drop

Local

contr
oller

234

333

1032525

231

18

10.4.1.6

192.*

*

* *

* *

* *

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Southbound interface
(OpenFlow)

OpenFlow switch, Flow table, OpenFlow controller, and network applications.

If the switch supports subnet masks on the IP source and/or destination fields, these
can more precisely specify matches. The port field (or ingress port) numerically
represents the incoming port of the switch and starts at 1. The length of this field is
implementation dependent. The ingress port field is applicable to all packets. The
source and destination MAC (Ethernet) addresses are applicable to all packets on
enabled ports of the switch and their length is 48 bits. The Ethernet type field is 16
bits wide and is applicable to all the packets on enabled ports. An OpenFlow switch
must match the type in both standard Ethernet and IEEE 802.2 with a Subnetwork
Access Protocol (SNAP) header and Organizationally Unique Identifier (OUI) of
0x000000. The special value of 0x05FF is used to match all the 802.3 packets without
SNAP headers. VLAN ID is applicable to all packets with and Ethernet type of
0x8100. The size of this field is 12 bits (that is, 4096 VLANs). The VLAN priority
(or the VLAN PCP field) is 3 bits wide and is applicable to all packets of Ethernet
type 0x8100. The IP source and destination address fields are 32 bit entities and are
applicable to all IP and ARP packets. These fields can be masked with a subnet mask.
The IP protocol field is applicable to all IP, IP over Ethernet, an the ARP packets. Its
length is 8 bits and in case of ARP packets, only the lower 8 bits of the ARP op-code
are used. The IP ToS (Type of Service) bits has a length of 6 bits and is applicable
to all IP packets. It specifies an 8 bit value and places ToS in the upper 6 bits. The
source and destination transport port addresses (or ICMP type/code) have a length
of 16 bits and are applicable to all TCP, UDP, and ICMP packets. In case of the ICMP
type/code only the lower 8 bits are considered for matching.

Introducing OpenFlow

[12]

Counters are maintained per table, per flow, per port and per queue. Counters wrap
around with no overflow indicator. The required set of counters is summarized in
the following figure. The phrase byte in this figure (and throughout this book) refers
to an 8 bit octet. Duration refers to the time the flow has been installed in the flow
table of the switch. The receive errors field includes all explicitly specified errors,
including frame, overrun, and CRC errors, plus any others.

Received Packets (64 bits)
Transmitted Packets (64 bits)
Received Bytes (64 bits)
Transmitted Bytes (64 bits)
Receive Drops (64 bits)
Transmit Drops (64 bits)
Receive Errors (64 bits)
Transmit Errors (64 bits)
Receive Frame Alignment Errors (64 bits)
Receive Overrun Errors (64 bits)
Receive CRC Errors (64 bits)
Collisions (64 bits)

Per Port Counters:
Active Entries (32 bits)
Packt lookups (64 bits)
Packet Matches (64 bits)

Per Table Counters:

Transmitted Packets (64 bits)
Transmitted Bytes (64 bits)
Transmit Overrun Errors (64 bits)

Per Queue Counters:

Received Packets (64 bits)
Received Bytes (64 bits)
Duration (seconds) (32 bits)
Duration (nano seconds) (32 bits)

Per Flow Counters:

Required list of counters for use in statistical messages.

Each flow entry is associated with zero or more actions that instruct the OpenFlow
switch how to handle matching packets. If no forward actions are present, the packet
is dropped. Action lists must be processed in the specified order. However, there is
no guaranteed packet output ordering within an individual port. For instance, two
packets which are generated and destined to a single output port as part of the action
processing, may be arbitrarily re-ordered. Pure OpenFlow switches only support the
Required Actions, while hybrid OpenFlow switches may also support the NORMAL
action. Either type of switches can also support the FLOOD action. The Required
Actions are:

•	 Forward: OpenFlow switches must support forwarding the packet to
physical ports and the following virtual ones:

°° ALL: Send the packet on to all interfaces, excluding the incoming port
°° CONTROLLER: Encapsulate and send the packet to the controller
°° LOCAL: Send the packet to the local networking stack of the switch
°° TABLE (Only for packet-out message): Perform action in the

flow table
°° IN_PORT: Send the packet out the input port

Chapter 1

[13]

•	 Drop: This indicates that all the matching packets should be dropped.
A flow entry with no specified action is considered as a Drop action.

•	 The Optional Actions are:
°° Forward: A switch may optionally support the following virtual

ports for forward action:
NORMAL: Process the packet using the traditional forwarding path
supported by the switch (that is traditional L2, VLAN, and/or L3
processing)
FLOOD: Flood the packet along the minimum spanning tree, not
including the incoming interface.

•	 Enqueue: This forwards a packet through a queue attached to a port.
Forwarding behavior is dictated by the configuration of the queue and is
used to provide the basic QoS support.

•	 Modify field: The optional (recommended) field modification actions are:

°° Setting VLAN ID: If no VLAN is present, a new header is added with
the specified VLAN ID (12 bit associated data) and priority of zero.
If a VLAN header already exists, the VLAN ID is replaced with the
specified value.

°° Setting VLAN priority: If no VLAN is present, a new header is added
with the specified priority (3 bit associated data) and VLAN ID of
zero. If a VLAN ID header already exists, the priority field is replaced
with the specified value.

°° Striping the VLAN header: This Strip VLAN header if present.
°° Modifying the Ethernet source/destination MAC address: This

replaces the existing Ethernet source/destination MAC address
with the new value (specified as a 48 bits data).

°° Modifying the IPv4 source/destination address: This replaces the
existing IP source/destination address with a new value (associated
with a 32 bits data) and updates the IP checksum (and TCP/UDP
checksum if applicable). This action is only applicable to IPv4 packets.

°° Modifying the IPv4 ToS bits: This replace the existing IP ToS field
with the 6 bits associated data. This action is only applicable to
IPv4 packets.

°° Modifying the transport source/destination port: This replaces
the existing TCP/UDP source/destination port with associated 16
bits data and updates the TCP/UDP checksum. This action is only
applicable to TCP and UDP packets.

Introducing OpenFlow

[14]

Upon a packet arrival at the OpenFlow switch, the packet header fields are extracted
and matched against the matching fields' portion of the flow table entries. This
matching starts at the first flow table entry and continues through subsequent flow
table entries. If a matching entry is found, the switch applies the appropriate set of
instructions associated with the matched flow entry. For each packet that matches
a flow entry, the associated counters for that entry are updated. If the flow table
look-up procedure does not result on a match, the action taken by the switch will
depend on the instructions defined at the table-miss flow entry. The flow table must
contain a table-miss entry in order to handle table misses. This particular entry
specifies a set of actions to be performed when no match is found for an incoming
packet. These actions include dropping the packet, sending the packet out on all
interfaces, or forwarding the packet to the controller over the secure OpenFlow
channel. Header fields used for the table lookup depend on the packet types as
described below:

•	 Rules specifying a port (ingress port) are matched against the physical port
that received the packet.

•	 The Ethernet headers (Source MAC, Destination MAC, Ethernet Type,
and more) as specified in the first figure, and are used for all packets.

•	 If the packet is a VLAN (Ethernet type 0x8100), the VLAN ID and VLAN
priority (PCP) fields are used in the lookup.

•	 For IP packets (Ethernet type equal to 0x0800), the lookup fields also include
those in the IP header (Source IP, Destination IP, IP protocol, ToS, and so on).

•	 For IP packets that are TCP or UDP (IP protocol equal to 6 or 17), the lookup
includes the transport ports (TCP/UDP source/destination ports).

•	 For IP packets that are ICMP (IP protocol equal to 1), the lookup includes the
Type and Code fields.

•	 For IP packets with nonzero fragment offset or more fragments bit set,
the transport ports are set to zero for the lookup.

•	 Optionally, for ARP packets (Ethernet type equal to 0x0806), the lookup
fields may also include the contained IP source and destination fields.

Packets are matched against flow entries based on prioritization. An entry that
specifies an exact match (that is no wildcards) is always the highest priority. All
wildcard entries have a priority associated with them. Higher priority entries must
match before lower priority ones. If multiple entries have the same priority, the
switch is free to choose any ordering. Higher numbers have higher priorities. The
following figure shows the packet flow in an OpenFlow switch. It is important to
note that if a flow table field has a value of ANY (*, wildcard), it matches all the
possible values in the header.

Chapter 1

[15]

There are various Ethernet framing types (Ethernet II, 802.3 with or
without SNAP, and so on). If the packet is an Ethernet II frame, the
Ethernet type is handled in the expected way. If the packet is an 802.3
frame with a SNAP header and an OUI equal to 0x000000, the SNAP
protocol ID is matched against the flow's Ethernet type. A flow entry
that specified an Ethernet Type of 0x05FF, matches all Ethernet 802.2
frames without a SNAP header and those with SNAP headers that do
not have an OUI of 0x000000.

Optional 802.1d
STP processing Table lookup

Apply
actions

Match
table

entry n?

Match
table

entry 0?

Send to controller
via Secure
Channel

Yes

No

Packet in from
network

Yes

No

Packet flow in an OpenFlow switch.

OpenFlow messages
The communication between the controller and switch happens using the OpenFlow
protocol, where a set of defined messages can be exchanged between these entities
over a secure channel. The secure channel is the interface that connects each
OpenFlow switch to a controller. The Transport Layer Security (TLS) connection to
the user-defined (otherwise fixed) controller is initiated by the switch on its power
on. The controller's default TCP port is 6633. The switch and controller mutually
authenticate by exchanging certificates signed by a site-specific private key.
Each switch must be user-configurable with one certificate for authenticating the
controller (controller certificate) and the other for authenticating to the controller
(switch certificate).

Introducing OpenFlow

[16]

Traffic to and from the secure channel is not checked against the flow table and
therefore the switch must identify incoming traffic as local before checking it against
the flow table. In the case that a switch loses contact with the controller, as a result
of an echo request timeout, TLS session timeout, or other disconnection, it should
attempt to contact one or more backup controllers. If some number of attempts to
contact a controller (zero or more) fail, the switch must enter emergency mode and
immediately reset the current TCP connection. Then the matching process is dictated
by the emergency flow table entries (marked with the emergency bit set). Emergency
flow modify messages must have timeout value set to zero. Otherwise, the switch
must refuse the addition and respond with an error message. All normal entries are
deleted when entering emergency mode. Upon connecting to a controller again, the
emergency flow entries remain. The controller then has the option of deleting all the
flow entries, if desired.

The first time a switch boots up, it is considered to be in emergency
mode. Configuration of the default set of flow entries is outside the
scope of the OpenFlow protocol.

The controller configures and manages the switch, receives events from the switch,
and sends packets out to the switch through this interface. Using the OpenFlow
protocol, a remote controller can add, update, or delete flow entries from the switch's
flow table. That can happen reactively (in response to a packet arrival) or proactively.
The OpenFlow protocol can be viewed as one possible implementation of controller-
switch interactions (southbound interface), as it defines the communication between
the switching hardware and a network controller. For security, OpenFlow 1.3.x
provides optional support for encrypted TLS communication and a certificate
exchange between the switches/controller(s); however, the exact implementation
and certificate format is not currently specified. Also, fine-grained security options
regarding scenarios with multiple controllers are outside the scope of the current
specification, as there is no specific method to only grant partial access permissions
to an authorized controller. The OpenFlow protocol defines three message types,
each with multiple subtypes:

•	 Controller-to-switch
•	 Symmetric
•	 Asynchronous

Controller-to-switch
Controller-to-switch messages are initiated by the controller and used to directly
manage or inspect the state of the switch. This type of messages may or may not
require a response from the switch and are categorized in the following subtypes.

Chapter 1

[17]

Features
Upon establishment of the TLS session, the controller sends a feature request
message to the switch. The switch must reply with a features reply message that
specifies the features and capabilities that are supported by the switch.

Configuration
The controller is able to set and query configuration parameters in the switch.
The switch only responds to a query from the controller.

Modify-State
These messages are sent by the controller to manage the state of the switches. They
are used to add/delete or modify flow table entries or to set switch port priorities.
Flow table modification messages can have the following types:

•	 ADD: For the ADD requests with the OFPFF_CHECK_OVERLAP flag set, the
switch must first check for any overlapping flow entries. Two flow entries
overlap if a single packet may match both, and both entries have the same
priority. If an overlap conflict exists between an existing flow entry and
the ADD request, the switch must refuse the addition and respond with
ofp_error_msg with the OFPET_FLOW_MODE_FAILED error type and the
OFPFMFC_OVERLAP error code. For the valid (non-overlapping) ADD requests,
or those with no overlap checking flag set, the switch must insert the flow
entry at the lowest numbered table entry for which the switch supports all
wildcards set in the flow_match struct, and for which the priority would be
observed during the matching process. If a flow entry with identical header
fields and priority already resides in the flow table, then that entry including
its counters must be removed and the new flow entry must be added. If
a switch cannot find any table entry to add the incoming flow entry, the
switch should send ofp_error_msg with the OFPET_FLOW_MOD_FAILD type
and the PFOFMFC_ALL_TABLES_FULL error code. If the action list in a flow
modify message references a port that will never be valid on a switch, the
switch must return ofp_error_msg with the OFPET_BAD_ACTION type and
the OFPBAC_BAD_OUT code. If the referenced port may be valid in the future
(for example, when a line card is added to a chassis) the switch may either
silently drop packets sent to the referenced port, or immediately return an
OFPBAC_BAD_PORT error and refuse the flow modify message.

Introducing OpenFlow

[18]

•	 MODIFY: If a flow entry with an identical header field does not currently
reside in the flow table, the MODIFY command acts like an ADD command,
and the new flow entry must be inserted with zeroed counters. Otherwise
the actions field is changed on the existing entry and its counters and idle
timeout fields are left unchanged.

•	 DELETE: For delete requests, if no flow entry matches, no error is recorded
and no flow table modification occurs. If a flow entry matches, the entry
must be deleted, and then each normal entry with the OFPFF_SEND_FLOW_REM
flag set should generate a flow removal message. Deleted emergency flow
entries generate no flow removal messages. DELETE and DELETE_STRICT
(see next bullet point) commands can be optionally filtered by the output
port. If the out_port field contains a value other than OFPP_NONE, it
introduces a constraint when matching. This constraint is that the rule must
contain an output action directed at that port. This field is ignored by the
ADD, MODIFY, and MODIFY_STRICT messages.

•	 MODIFY and DELETE: These flow mode commands have corresponding
_STRICT versions. In non-RESTRICT versions, the wildcards are active and
all flows that match the description are modified or removed. In _STRICT
versions, all fields, including the wildcards and priority, are strictly matched
against the entry and only an identical flow is modified or removed. For
instance, if a message to remove entries is sent to the switch that has all
wildcard flags set, the DELETE command would delete all flows from all
tables. However, the DELETE_STRICT command would only delete a rule that
applies to all packets at the specified priority. For the non-strict MODIFY and
DELETE commands that contain wildcards, a match will occur when a flow
entry exactly matches or is more specific than the description in the flow_mod
command. For example, if a DELETE command says to delete all flows with
a destination port of 80, then a flow entry that has all wildcards will not be
deleted. However, a DELETE command that has all wildcards will delete an
entry that matches all port 80 traffic.

Read-State
These messages collect statistics from the switch flow tables, ports, and the
individual flow entries.

Send-Packet
These are used by the controller to send packets out of a specified port on the switch.

Chapter 1

[19]

Barrier
Barrier request/reply messages are used by the controller to ensure message
dependencies have been met or to receive notifications for completed operations.

Symmetric messages
Symmetric messages are initiated by either the switch or the controller and sent
without solicitation. There are three symmetric message subtypes in OpenFlow
protocol as follows:

Hello
Hello messages are exchanged between the switch and controller upon
connection setup.

Echo
Echo request/reply messages can be sent from either the switch or the controller,
and must return an echo reply. These messages can be used to indicate the latency,
bandwidth, and/or liveliness of a controller-switch connection (that is a heartbeat).

Vendor
These messages provide a standard way for OpenFlow switches to offer additional
functionality within the OpenFlow message type space for future revisions of
OpenFlow.

Asynchronous messages
Asynchronous messages are initiated by the switch and used to update the controller
of network events and changes to the switch state. Switches send asynchronous
messages to the controller to denote a packet arrival, switch state change, or an error.
There are four main asynchronous messages as follows:

Introducing OpenFlow

[20]

Packet-in
For all packets that do not have a matching flow entry or if a packet matches an entry
with a send to controller action, a packet-in message is sent to the controller. If the switch
has sufficient memory to buffer packets that are sent to the controller, the packet-in
message contains some fraction of the packet header (by default, 128 bytes) and a
buffer ID to be used by the controller when it is ready for the switch to forward the
packet. Switches that do not support internal buffering (or have run out of internal
buffer space) must send the full packet to the controller as part of the message.

Flow-Removal
When a flow entry is added to the switch by a flow modify message (the Modify State
section), an idle timeout value indicates when the entry should be removed due to
the lack of activity as well as a hard timeout value. The hard timeout value indicates
when the entry should be removed, regardless of activity. The flow modify message
also specifies whether the switch should send a flow removal message to the
controller when the flow expires. Flow modify messages, which delete flow entries
may also cause flow removal messages.

Port-status
The switch is expected to send port-status messages to the controller as the port
configuration state changes. These events include changes in port status (for
example, disabled by the user) or a change in the port status as specified by 802.1D
(Spanning Tree). OpenFlow switches may optionally support 802.1D Spanning
Tree Protocol (STP).These switches are expected to process all 802.1D packets
locally before performing flow lookup. Ports status as specified by the STP is then
used to limit packets forwarded to the OFP_FLOOD port to only those ports along the
spanning tree. Port changes as a result of the spanning tree are sent to the controller
via the port-update messages. Note that forward actions that specify the outgoing
port of OFP_ALL ignore the port status set by the STP. Packets received on the ports
that are disabled by the STP must follow the normal flow table processing path.

Error
The switch is able to notify the controller of problems using error messages.

The heart of OpenFlow specification is the set of C structures used for
OpenFlow protocol messages. Interested readers can find these data
structures and their detailed explanation available at:
www.openflow.org/documents/openflow-spec-v1.0.0.pdf or
www.opennetworking.org/sdn-resources/onf-specifications.

Chapter 1

[21]

Northbound interface
External management systems or network applications (Net Apps) may wish to
extract information about the underlying network or control an aspect of the network
behavior or policy. Additionally, controllers may find it necessary to communicate
with each other for a variety of reasons. For instance, an internal control application
may need to reserve resources across multiple domains of control, or a primary
controller may need to share policy information with a backup controller. Unlike
controller-switch communication (that is the southbound interface), there is no
currently accepted standard for northbound interface and they are more likely to be
implemented on an ad-hoc basis for particular applications. One potential reason is
that the northbound interface is defined entirely in software, while controller-switch
interactions must enable the hardware implementation. If we consider the controller
as a network operating system, then there should be a clearly defined interface by
which applications can access the underlying hardware (switches), coexist and
interact with other applications, and utilize system services (for example, topology
discovery, forwarding, and so on), without requiring the application developer to
know the implementation details of the controller (that is the network operating
system). While there are several controllers that exist, their application interfaces are
still in the early stages and independent from each other and incompatible. Until a
clear northbound interface standard emerges, SDN applications will continue to be
developed in an ad-hoc fashion and the concept of flexible and portable network apps
may have to wait for some time.

Summary
The OpenFlow is the continuation of many previous efforts to provide decoupled
control and data forwarding in networking equipment. A background of these
efforts was presented in this chapter. Presenting the key building blocks of an SDN
deployment, in particular the OpenFlow protocol and its basic operation were
covered in this chapter. After introducing OpenFlow, in the next chapter we present
the reference implementation of OpenFlow switch in software and hardware along
with an introduction to Mininet experiment environment.

Implementing the
OpenFlow Switch

In this chapter we will be covering implementation of the OpenFlow switch (v1.0)
and important hardware and software OpenFlow switches. Then we will introduce
Mininet as an integrated environment to experience with the OpenFlow switches
and controllers. The reference implementation of OpenFlow and hardware/software
products will be presented in this chapter. An OpenFlow laboratory using Mininet
network emulation is explained along with a step-by-step experiment in Mininet.

OpenFlow reference switch
OpenFlow switch is a basic forwarding element, which is accessible via OpenFlow
protocol and interface. Although at first glance this setup would appear to simplify
the switching hardware, flow-based SDN architectures such as OpenFlow may
require additional forwarding table entries, buffer space, and statistical counters that
are not very easy to implement in traditional switches with application specific ICs
(ASICs). In an OpenFlow network, switches come in two flavors, hybrid (OpenFlow
enabled) and pure (OpenFlow only). Hybrid switches support OpenFlow in addition
to traditional operation and protocols (L2/L3 switching). Pure OpenFlow switches
have no legacy features or onboard control, and completely rely on a controller
for forwarding decisions. Most of the currently available and commercial switches
are hybrids. Since OpenFlow switches are controlled by an open interface
(over TCP-based TLS session), it is important that this link remains available
and secure. The OpenFlow protocol can be viewed as one possible implementation
of SDN-based controller-switch interactions (which is a messaging protocol),
as it defines the communication between the OpenFlow switch and an
OpenFlow controller.

Implementing the OpenFlow Switch

[24]

The reference implementation of the OpenFlow switch from Stanford University
includes ofdatapath, which implements the flow table in user space; ofprotocol,
a program that implements the secure channel component of the reference switch;
and dpctl, which is a tool for configuring the switch. This distribution includes
some additional software as well (for instance, controller, a simple controller
program that connects to any number of OpenFlow switches and a Wireshark
dissector that can decode the OpenFlow protocol). The following figure depicts
the OpenFlow reference switch, interface, and three message types (controller-to-
switch, asynchronous, and symmetric) and sub-types. These messages were briefly
introduced in the previous chapter. They are presented with more implementation
related details in this section. Controller-to-switch messages are initiated by the
controller and may or may not require a response from the OpenFlow switch.

OpenFlow 1.3.0 provides optional support for encrypted TLS
communication and a certificate exchange between the OpenFlow
switches/controller(s). However, the exact implementation and
certificate format is not currently specified. Furthermore, fine-grained
security options regarding scenarios with multiple OpenFlow
controllers are out of the scope of the current OpenFlow specification.
There is no method specified to only grant partial access permissions
to an authorized OpenFlow controller. Also note that in this book we
strictly stick to OpenFlow 1.0.0 specification. The reference OpenFlow
1.0.0 implementation can be downloaded from: www.openflow.org/
wp/downloads/

- Features
- Configurations
- Modify state
- Read state (statistics)
- Queue query
- Send packet
- Barrier

OpenFlow
channel

Flow Table(s)
OpenFlow switch

- Hello
- Echo request/relpy
- Vendor

Symmetric messages:

OpenFlow interface
(e.g., TCP:6633
session) & OpenFlow
protocol messages.Controller-Switch messages:

Asynchronous messages:
- Packet-in
- Flow removed
- Port status
- Error

OpenFlow
Controller

OpenFlow interface and messaging protocol.

Chapter 2

[25]

These messages are used to directly manage or inspect the state of the switch:

•	 Features: Upon the establishment of the TLS session (for example, TCP TLS
session on port 6633), the controller sends an OFPT_FEATURES_REQUEST
message to the switch and the OpenFlow switch reports back (via OFPT_
FEATURES_REPLY message) the features and capabilities that it has and
supports. The datapath identifier (datapath_id), number of supported
flow tables by data path (OpenFlow switch), switch capabilities, supported
actions, and definition of ports are the important features that are reported
to the controller. The datapath_id field uniquely identifies an OpenFlow
switch (data path). It is a 64-bit entity and the lower 48 bits are intended for
the switch MAC address, while the top 16 bits are up to the manufacturers.

•	 Configuration: The controller is able to set and query configuration
parameters in the switch with the OFPT_SET_CONFIG and OFPT_GET_CONFIG_
REPLY messages, respectively. The switch responds to a configuration request
with an OFPT_GET_CONFIG_REPLY message; it does not reply to a request to
set the configuration.

•	 Modify state: Modifications to the flow table from the controller are done
with the OFPT_FLOW_MOD message and the controller uses the OFPT_PORT_MOD
message to modify the behavior of the physical ports. The flow modification
commands are ADD, MODIFY, MODIFY_STRICT, DELETE, and DELETE_STRICT,
which were explained in Chapter 1, Introducing OpenFlow. The port
configuration bits indicate whether a port has been administratively brought
down, options for handling 802.1D spanning tree protocol (STP) packets,
and how to handle incoming and outgoing packets. The controller may set
OFPPFL_NO_STP to 0 to enable STP on a port, or to 1 to disable STP on a port.
The OpenFlow reference implementation sets this bit to 0 (enabling STP)
by default.

•	 Read State (Statistics): The controller can query the status of the switch
using OFPT_STAT_REQUEST message. The switch responds with one or
more OFPT_STATS_REPLY messages. There is a type field in these message
exchanges, which specifies the kind of information that is being exchanged
(OpenFlow switch description, individual flow statistics, aggregate flow
statistics, flow table statistics, physical port statistics, queue statistics for
a port, and vendor-specific messages) and determines how the body field
should be interpreted.

Implementing the OpenFlow Switch

[26]

•	 Queue query: An OpenFlow switch provides limited Quality of Service
(QoS) support through a simple queuing mechanism. One (or more) queue(s)
can be attached to a port and could be used to map flows on it (them). The
flows, which are mapped to a specific queue, will be treated according to the
configuration of that queue (for example, minimum rate control). Note that
queue configuration takes place outside the OpenFlow protocol (for example,
through command-line interface) or an external dedicated configuration
protocol. The controller can query the switch for configured queues on a port
using queue query message.

•	 Send packet: Using this message (that is, OFPT_PACKET_OUT), the controller is
able to send packets out of a specified port of the OpenFlow switch.

•	 Barrier: This message is sent whenever the controller wants to ensure message
dependencies have been met or wants to receive notifications for completed
operations. The message is OFPT_BARRIER_REQUEST and has no message
body. Upon receipt, the OpenFlow switch must finish processing all
previously-received messages before executing any message beyond the
barrier request. When current processing is completed, the switch must
send an OFPT_BARRIER_REPLY message the transaction ID (xid) of the
original request.

Asynchronous messages
Asynchronous messages are initiated by the switch, used to update the controller
of network events, and changes to the switch state. Switches send asynchronous
messages to the controller to denote a packet arrival, flow removal, port status
change, or an error.

When packets are received by the switch (data path), they are sent to the controller
using the OFPT_PACKET_IN message. When a packet is buffered in the switch,
some number of bytes from the message will be included in the data portion of
the message. If the packet is sent because of a send-to-controller action, then the
max_len bytes are sent and if the packet is sent due to a flow table miss, then at least
the miss_send_len bytes are sent. If the packet is not buffered inside the switch,
then the entire packet is included in the data portion of the message. Switches that
implement buffering are expected to expose the amount of buffering and the length
of time before buffers may be reused. An OpenFlow switch must gracefully handle
the case where a buffered packet_in message gets no response from the controller.

Chapter 2

[27]

When flows time out, the OpenFlow switch notifies the controller with OFPT_FLOW_
REMOVED message (if the controller has requested to be notified). The duration_sec
and duration_nsec fields of the message indicate the elapsed time the flow has
been installed in the switch. The total duration in nanoseconds can be computed
as duration_sec x 109 + duration_nanosec. Implementations are required to
provide millisecond precision. The idle_timeout field is directly extracted from the
FLOW_MOD that created the flow table entry.

As physical ports are added, modified, and possibly removed from the data path, the
controller needs to be informed with the OPFT_PORT_STATUS message. Also there are
cases where the OpenFlow switch needs to notify the controller of a problem. The
message includes an error type, error code, and a variable-length data that should be
interpreted according to the error type and code. In most cases, the data part is the
message that caused the problem. There are six types of error. OFPET_HELLO_FAILED
indicates that Hello protocol failed. OFPET_BAD_REQUEST refers to the case, where
the request was not understood. Error in action description is indicated by OFPET_
BAD_ACTION. If the FLOW_MOD or PORT_MOD requests are failed then the error type is
OFPET_FLOW_MOD_FAILED and OFPET_PORT_MOD_FAILED, respectively. Failure in port
queue operations is classified with OFPET_QUEUE_OP_FAILED.

Symmetric Messages
The hello message (OFPT_HELLO), echo request/reply, and vendor message are
symmetric OpenFlow messages. In the OpenFlow reference implementation
that includes a user space process and a kernel module, echo request/reply is
implemented in the kernel module. This implementation consideration provides
more accurate end-to-end latency timing. The vendor field in the OFPT_VENDOR
message is a 32-bit value that uniquely identifies the vendor. If the most significant
byte is zero, the next three bytes (24 bits) are the vendor’s IEEE OUI. If a switch does
not understand a vendor extension, it must send an OFPT_ERROR message with a
OFPET_BAD_REQUEST error type, and a OFPBRC_BAD_VENDOR error code.

Hardware Implementations
OpenFlow reference standard (OpenFlow 1.0.0, Wire Protocol 0x01) is the main
and early SDN enabling technologies being currently implemented in the
commodity-networking hardware. In this section, we do not intend to give a
complete detailed overview of OpenFlow enabled switches and manufacturers,
but rather give a brief list of a few options that are available in the market.

Implementing the OpenFlow Switch

[28]

The following table lists commercial switches that are currently available, along with
their manufacturer, and the version of OpenFlow they have implemented:

Manufacturer Switch models OpenFlow version

Brocade NetIron CES 2000 Series,
CER 2000,

1.0

Hewlett
Packard

3500/3500yl, 5400zl,6200zl,
6600, 8200zl

1.0

IBM RackSwitch G8264, G8264T 1.0

Juniper EX9200 Programmable
switch

1.0

NEC PF5240, PF5820 1.0

Pica8 P-3290, P-3295, P-3780, P3920 1.2

Pronto 3290 and 3780 1.0

Broadcom BCM56846 1.0

Extreme
Networks

BlackDiamond 8K, Summit
X440, X460, X480

1.0

Netgear GSM7352Sv2 1.0

Arista 7150, 7500, 7050 series 1.0

Software-based switches
There are currently several OpenFlow software switches available that can be used,
for instance, to run an OpenFlow test-bed or to develop and test OpenFlow-based
network applications. A list of current software switches with a brief description,
including implementation language and the OpenFlow standard, are as follows:

•	 Open vSwitch: This is a multilayer and production quality virtual switch
licensed under the Apache 2.0 license. It is designed to enable network
automation through programmatic extension, while still supporting standard
management interfaces and protocols (for example, NetFlow, sFlow,
OpenFlow, OVSDB, and so on.).

•	 Indigo: This is an open source OpenFlow implementation that runs on
physical switches and uses the hardware features of Ethernet switch ASICs
to run OpenFlow at line rates. It is based on the OpenFlow Reference
Implementation from Stanford University.

Chapter 2

[29]

•	 LINC: This is an open source project led by FlowForwarding effort and is
an Apache 2 license implementation based on OpenFlow 1.2/1.3.1. LINC is
architected to use generally-available commodity x86 hardware and runs on
a variety of platforms such as Linux, Solaris, Windows, MacOS, and FreeBSD
where Erlang runtime is available.

•	 Pantou (OpenWRT): This turns a commercial wireless router/access point to
an OpenFlow-enabled switch. OpenFlow is implemented as an application
on top of OpenWrt. Pantou is based on the BackFire OpenWrt release
(Linux 2.6.32). The OpenFlow module is based on the Stanford reference
implementation (userspace). At the time of this writing, it supports generic
Broadcom and some models of LinkSys and TP-LINK access points with
Broadcom and Atheros chipsets.

•	 Of13softswtich: This is an OpenFlow 1.3 compatible user-space software
switch implementation based on the Ericsson TrafficLab 1.1 softswitch.
The latest version of this software switch includes the switch implementation
(ofdatapath), a secure channel for connecting the switch to the controller
(ofprotocol), a library for conversion from/to OpenFlow 1.3 (oflib), and a
configuration tool (dpctl). This project is supported by Ericsson Innovation
Center in Brazil and maintained by CPqD in technical collaboration with
Ericsson Research.

OpenFlow laboratory with Mininet
Mininet is a software tool, which allows an entire OpenFlow network to be emulated
on a single computer. Mininet uses lightweight process-based virtualization (Linux
network namespaces and Linux container architecture) to run many hosts and
switches (for instance 4096) on a single OS kernel. It can create kernel or user-space
OpenFlow switches, controllers to control the switches, and hosts to communicate over
the emulated network. Mininet connects switches and hosts using virtual Ethernet
(veth) pairs. It considerably simplifies the initial development, debugging, testing,
and deployment process. New network applications can be first developed and tested
on an emulation of the anticipated deployment network. It can be then moved to
the actual operational infrastructure. By default, Mininet supports OpenFlow v1.0.
However, it may be modified to support a software switch that implements a newer
release. Some of the key features and benefits of Mininet are as follows:

•	 Mininet creates a network of virtual hosts, switches, controllers, and links.
•	 Mininet hosts run standard Linux network software, and its switches support

OpenFlow. It can be considered as an inexpensive OpenFlow laboratory for
developing OpenFlow applications. It enables complex topology testing,
without the need to wire up a physical network.

Implementing the OpenFlow Switch

[30]

•	 Mininet includes a command-line interface (CLI) that is topology-aware and
OpenFlow-aware, for debugging or running network-wide tests.

•	 You can start using Mininet out of the box without any programming, but
it also provides a straightforward and extensible Python API for network
creation and experimentation.

•	 Instead of being a simulation tool, Mininet is an emulation environment,
which runs real, unmodified code, including application code, OS kernel
code, and control plane code (both OpenFlow controller code and Open
vSwitch code).

•	 It is easy to install and is available as a pre-packaged virtual machine (VM)
image that runs on VMware or VirtualBox for Mac/Windows/Linux with
OpenFlow v1.0 tools already installed.

In the rest of this section, we will provide a tutorial overview of Mininet, which will
also be used in the rest of this book.

Getting started with Mininet
The easiest way of getting started with Mininet is to download a pre-packaged
VM image of Mininet (which runs over Ubuntu). This VM includes all OpenFlow
binaries, pre-installed tools to support large Mininet networks, along with Mininet
itself. In addition to pre-packaged VM installation, interested readers can install it
natively from source code or packages on Ubuntu.

The examples in this chapter are based on Version 2.0 of
Mininet. The latest version of Mininet can be downloaded
from: www.mininet.org/download.

In case you want to get the VM image, you have to download and install
a virtualization system. VirtualBox (free, GPL) or VMwarePlayer (free for
non-commercial use) are the available choices, which are free and work on
Windows, OS X, and Linux. Mininet is an Open Virtualization Format (OVF) image
file (approximately 1 GB), which can be imported by VirtualBox or VMware Player
(free for non-commercial use). In VirtualBox, you can import the Mininet’s OVF file
by double-clicking on the VM image or go to File and select Import Appliance. Then
go to Settings and add an additional host-only network adapter to log in to the VM
image. If you are using VMware, it may ask you to install VMware tools on the VM;
if it asks, decline. In the following examples, we have used VMware Player as our
virtualization system for Mininet.

Chapter 2

[31]

To reach the same environment, you can take the following steps:

•	 Start the Mininet VM image up in the virtualization program of your choice
(VMware Player is shown in the following screenshot).

•	 Log in to the Mininet VM using the default username and password.
The default username and password are both mininet. The root account
is not enabled for login and you can use sudo to execute a command with
superuser privileges.

•	 In order to establish an SSH session to the Mininet VM, you have to find the
IP address of the VM. This address for VMware Player is probably in the
range of 192.168.x.y. Type the following command in the VM console:
$ /sbin/ifocnfig eth0

•	 If you are using VirtualBox, and have set up a host-only network on eth1,
you should use $ /sbin/ifconfig eth1 eth1 instead.

•	 Assuming that VM is running locally, and that the additional precautions
of ssh –X are not necessary, you can SSH to the VM using the ssh –Y
mininet@192.168.44.128 command, which has no authentication timeout
by default. You have to change the IP address with the one that you get
as the output of ifconfig command. Our setup in this section includes
the Mininet VM over VMware Player, putty as our SSH client (with X-11
forwarding option enabled), and Xming X-Server. The X-11 forwarding (see
the following information box for more information) enables you to execute
programs with graphical output (for example, Wireshark, which is pre-
installed and included in the Mininet VM image). In the following screenshot
you can see the experimental environment based on VMware Player,
Mininet, XMing (X-Server), and putty (SSH terminal).

Implementing the OpenFlow Switch

[32]

•	 In the following screenshot, you can see that we have logged in to the
Mininet VM using putty (SSH client) and then we have started the Wireshark
as a background process (that is, sudo wireshark &). Since the X-11
forwarding is enabled, the Wireshark GUI appears as a separate window.

OpenFlow laboratory using Mininet.

•	 Before starting the Mininet emulator, you have to select the Capture
device in Wireshark (lo or loopback interface) and start capturing the
traffic. In order to display the OpenFlow related traffic, you have to add
of (OpenFlow) in the filter box of Wireshark and apply it to the capturing
traffic. This will instruct Wireshark to just display OpenFlow related traffic.
Since Mininet is not started, no OpenFlow packets should be displayed in
the main window of Wireshark. In the next section you will run a sample
experiment using Mininet.

Chapter 2

[33]

The Mininet VM does not include a desktop manager. The graphic
output should be forwarded via X forwarding through SSH. You can
consult the following FAQ to enable X11 forwarding. Setting X11 up
correctly will enable you to run other GUI programs and the xterm
terminal emulator, used later in this chapter. https://github.com/
mininet/mininet/wiki/FAQ#wiki-x11-forwarding

Experimenting with Mininet
Mininet enables you to quickly create, customize, interact with, and share an
OpenFlow prototype. Mininet’s command line can be used to create a network
(hosts and switches). Its CLI allows you to control and manage your entire virtual
network from a single console. Furthermore, Mininet’s API allows you to develop
custom network applications with a few lines of Python script. Once a prototype
works on Mininet, it can be deployed on a real-network.

In this sample experiment, we will use the default topology of Mininet (by running
$ sudo mn). This topology includes one OpenFlow switch connected to two hosts,
plus the OpenFlow reference controller. This topology could also be specified on
the command line with --topo=minimal. Other topologies are also available out of
the box in Mininet; see the --topo section in the output of mn -h. You can display
nodes, links, and dump information about all nodes in the setup using the following
commands respectively.

mininet> nodes

mininet> net

mininet> dump

Implementing the OpenFlow Switch

[34]

Upon execution of Mininet emulation environment with default topology, the
OpenFlow controller and switch initiate the OpenFlow protocol, which can be
captured and viewed in the Wireshark capturing window. The following screenshot
shows the captured traffic, which shows the Hello message, feature request/reply
and several packet-in messages. This confirms that the OpenFlow switch in this
setup is connected to the OpenFlow controller.

OpenFlow traffic, which is captured in Wireshark.

If the first string typed into the Mininet CLI (mininet>) is a host, switch, or controller
name, the command is executed on that node. For example, you can see the Ethernet
and loopback interface of first host (h1) using the following command:

mininet> h1 ifconfig -a

Now we can check the connectivity of each host by a simple ping command:

mininet> h1 ping –c 1 h2

Chapter 2

[35]

This commands sends a single ping packet from h1 to h2. The first host (h1) ARPs
for the MAC address of the second (h2) causes a packet_in message to go to the
OpenFlow controller. The controller then sends a packet_out message to flood the
broadcast packet to other ports on the switch (in this example, the only other data
port). The second host observes the ARP request and sends a broadcast reply. This
reply goes to the controller, which sends it to the first host and pushes down a flow
entry to the flow table of s1 (OpenFlow switch).

The captured traffic after issuing a h1 ping –c 1 h2command in Mininet.

Now the first host knows the IP address of the second, and can send its ping via an
ICMP echo request. This request and its corresponding reply from the second host
both go to the controller and results in a flow entry pushed down. The actual packets
are getting sent out too. In our setup, the reported ping time is 3.93ms. We repeat the
same ping command one more time:

mininet> h1 ping –c 1 h2

The ping time for the second ping command is decreased to just 0.25ms. A flow entry
covering ICMP ping traffic was previously installed in the switch, so no control traffic
was generated, and the packets immediately pass through the switch. An easier way
to run this test is to use the Mininet CLI built-in pingall command, which does an
all-pairs ping. Another useful test is a self-contained regression test. The following
command created a minimal topology, started up the OpenFlow reference controller,
ran an all-pairs-ping test, and tore down both the topology and the controller.

$ sudo mn --test pingpair

Another useful test is the performance evaluation using iperf.

$ sudo mn --test iperf

Implementing the OpenFlow Switch

[36]

This commands needs a few seconds to complete. It creates the same Mininet
topology (one controller, one switch, and two hosts), runs an iperf server on one
host, an iperf client on the second host, and reports the TCP bandwidth between
these two hosts.

Using Mininet’s Python API, it is possible to define custom topologies for
experiments. A built-in example is provided in ~/mininet/custom/topo-2sw-
2host.py. This example connects two switches directly, with a single host connected
to each switch:

“””Custom topology example
Two directly connected switches plus a host for each switch:
 host --- switch --- switch --- host
 h1 <–> s3 <–> s4 <–> h2
Adding the ‘topos’ dict with a key/value pair to generate our newly
defined
topology enables one to pass in ‘--topo=mytopo’ from the command line.
“””
from mininet.topo import Topo
class MyTopo(Topo):
 “Simple topology example.”
 def __init__(self):
 “Create custom topo.”
 # Initialize topology
 Topo.__init__(self)
 # Add hosts and switches
 leftHost = self.addHost(‘h1’)
 rightHost = self.addHost(‘h2’)
 leftSwitch = self.addSwitch(‘s3’)
 rightSwitch = self.addSwitch(‘s4’)
 # Add links
 self.addLink(leftHost, leftSwitch)
 self.addLink(leftSwitch, rightSwitch)
 self.addLink(rightSwitch, rightHost)
topos = { ‘mytopo’: (lambda: MyTopo()) }

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/supportand register to have the files e-mailed directly to you.

Chapter 2

[37]

This Python script can be passed as a command-line parameter to the Mininet.
When a custom Mininet file is provided, it can add new topologies, switch types,
and tests to the command line. For instance a pingall test can be executed using the
mentioned topology with the following invocation of Mininet:

$ sudo mn --custom ~/mininet/custom/topo-2sw-2host.py --topo mytopo
--test pingall

For more complex debugging and also having access to the console of hosts, switch(es)
or controller(s), you can start Mininet with –x command line parameter (that is, sudo
mn –x). The xterms, which will pop up, are useful for running interactive commands.
For instance in the xterm labeled, switch: s1 (root), you can run:

dpctl dump-flows tcp:127.0.0.1:6634

Since the flow table of the switch s1 is empty, nothing will print out. Now in the
xterm of host 1 (h1), you can ping the other host (h2) using normal ping command
(# ping 10.0.0.2). If you go back to the xterm of switch s1, and dump the flow
table, you should see multiple flow entries now. You can also use the dpctl built-in
command in Mininet.

This was just a brief introduction to Mininet. In the following chapters
we will use Mininet as part of our setup for experimenting with
OpenFlow controllers and development of network applications.
Interested readers can find more details on the Mininet web site:
www.mininet.org.

Summary
The reference implementation of the OpenFlow switch includes ofdatapath, which
implements the flow table in user space; ofprotocol, a program that implements
the secure channel component of the reference switch; and dpctl, which is a tool for
configuring the switch. There are three main message types in OpenFlow protocol
(controller-to-switch, asynchronous, and symmetric messages). In addition to
hardware OpenFlow switches, there is software implementation of OpenFlow in the
form of soft-switches. Mininet is a network emulator, which runs a collection of
end-hosts, switches, and links on a single Linux kernel. In this chapter we presented
and used Mininet as an OpenFlow laboratory on a single computer. In the next chapter
of this book, we will go through different SDN/OpenFlow controller options.

The OpenFlow Controllers
This chapter covers the role of the OpenFlow controllers, the interface to the switch,
and the provided API for Network Applications (Net Apps). We will also see:

•	 The overall functionality of the OpenFlow (SDN) controllers
•	 The existing implementations (including NOX/POX, NodeFlow, Floodlight,

and OpenDaylight)
•	 Special controllers or applications over controllers (FlowVisor and

RouteFlow)

SDN controllers
The decoupled control and data plane architecture of software-defined networking
(SDN), as depicted in the following figure, and in particular OpenFlow can be
compared with an operating system and computer hardware. The OpenFlow
controller (similar to the operating system) provides a programmatic interface to the
OpenFlow switches (similar to the computer hardware). Using this programmatic
interface, network applications, referred to as Net Apps, can be written to perform
control and management tasks and offer new functionalities. The control plane in SDN
and OpenFlow in particular is logically centralized and Net Apps are written as if the
network is a single system.

With a reactive control model, the OpenFlow switches must consult an OpenFlow
controller each time a decision must be made, such as when a new packet flow reaches
an OpenFlow switch (that is, Packet_in event). In the case of flow-based control
granularity, there will be a small performance delay as the first packet of each new
flow is forwarded to the controller for decision (for example, forward or drop), after
which future traffic within that flow will be forwarded at line rate within the switching
hardware. While the first-packet delay is negligible in many cases, it may be a concern
if the central OpenFlow controller is geographically remote or if most flows are
short-lived (for example, as single-packet flows). An alternative proactive approach is
also possible in OpenFlow to push policy rules out from the controller to the switches.

The OpenFlow Controllers

[40]

While this simplifies the control, management, and policy enforcement tasks, the
bindings must be closely maintained between the controller and OpenFlow switches.
The first important concern of this centralized control is the scalability of the system
and the second one is the placement of controllers. A recent study of the several
OpenFlow controller implementations (NOX-MT, Maestro, and Beacon), conducted
on a large emulated network with 100,000 hosts and up to 256 switches, revealed
that all OpenFlow controllers were able to handle at least 50,000 new flow requests
per second in each of the experimental scenarios. Furthermore, new OpenFlow
controllers under development, such as Mc-Nettle (http://haskell.cs.yale.edu/
nettle/mcnettle/) target powerful multicore servers and are being designed to
scale up to large data center workloads (for example, 20 million flow requests per
second and up to 5,000 switches). In packet switching networks, traditionally, each
packet contains the required information for a network switch to make individual
routing decisions. However, most applications send data as a flow of many
individual packets. The control granularity in OpenFlow is in the scale of flows, not
packets. When controlling individual flows, the decision made for the first packet
of the flow can be applied to all the subsequent packets of the flow within the data
plane (OpenFlow switches). The overhead may be further reduced by grouping
the flows together, such as all traffic between two hosts, and performing control
decisions on the aggregated flows.

North-bound API

Control interface for data plane
(for instance OpenFlow)

SDN enabled
Network equipment

Network infrastructure

SDN
control
software Networking services

Control layer

Application layer
Network Application

The role of controller in SDN approach

Chapter 3

[41]

Multiple controllers may be used to reduce the latency or increase the scalability
and fault tolerance of the OpenFlow (SDN) deployment. OpenFlow allows the
connection of multiple controllers to a switch, which would allow backup controllers
to take over in the event of a failure. Onix and HyperFlow take the idea further by
attempting to maintain a logically centralized, but physically distributed control
plane. This decreases the lookup overhead by enabling communication with local
controllers, while still allowing applications to be written with a simplified central
view of the network. The potential main downside of this approach is maintaining
the consistent state in the overall distributed system. This may cause Net Apps,
that believe they have an accurate view of the network, to act incorrectly due to
inconsistency in the global network state.

Recalling the operating system analogy, an OpenFlow controller acts as a network
operating system and should implement at least two interfaces: a southbound
interface that allows OpenFlow switches to communicate with the controller, and
a northbound interface that presents a programmable application programming
interface (API) to network control and management applications (that is, Net
Apps). The existing southbound interface is OpenFlow protocol (covered in
Chapter 2, Implementing the OpenFlow Switch) as an early SDN southbound interface
implementation. External control and management systems/software or network
services may wish to extract information about the underlying network or enforce
policies, or control an aspect of the network behavior. Besides, a primary OpenFlow
controller may need to share policy information with a backup controller, or to
communicate with other controllers across multiple control domains. While the
southbound interface (for example, OpenFlow or ForCES, http://datatracker.
ietf.org/wg/forces/charter/) is well defined and can be considered as a de facto
standard, there is no widely accepted standard for northbound interactions, and they
are more likely to be implemented on a use-case basis for particular applications.

Existing implementations
Currently, there are different OpenFlow (and SDN) controller implementations,
which we will introduce in more detail in Chapter 8, Open Source Resources, as part
of existing open source projects. In this chapter, we limit ourselves to NOX, POX,
NodeFlow, Floodlight (which is forked from Beacon), and OpenDaylight to present
some OpenFlow controllers and different possibilities for choosing a programming
language to develop the network applications.

The OpenFlow Controllers

[42]

NOX and POX
NOX (www.noxrepo.org) was the first OpenFlow controller written in C++
and provides API for Python too. It has been the basis for many research and
development projects in the early exploration of OpenFlow and SDN space.
NOX has two separate lines of development:

•	 NOX-Classic
•	 NOX, also known as new NOX

The former is the well-known line of development, which contains support for
Python and C++ along with a bunch of network applications. However, this line
of development is deprecated and there is no plan for further development on
NOX-Classic. New NOX only supports C++. It has fewer network applications
compared to NOX-Classic, but is much faster and has a much cleaner codebase.
POX is Python-only version of NOX. It can be considered as a general, open source
OpenFlow controller written in Python, and a platform for rapid development and
prototyping of network applications. The primary target of POX is research. Since
many of the research projects are short-lived by nature, the focus of the developers
of POX is on right interfaces rather than maintaining a stable API. NOX (and POX)
are managed in Git source code repositories on GitHub. Cloning the Git repository
is the preferred way to get NOX and POX. POX branches fall into two categories:
active and released. Active branches are branches that are being actively developed.
Released branches are branches, which at some point were selected as being a new
version. The most recently released branch may continue to get worked on, but only
in the form of bug fixes—new features always go into the active branch. You can get
the latest version of NOX and POX with the following commands:

$ git clone http://noxrepo.org/git/nox

$ git clone http://www.github.com/noxrepo/pox

In Chapter 2, Implementing the OpenFlow Switch, we set up the OpenFlow laboratory
using Mininet emulation environment. In this section, we start with a Net App,
which behaves as a simple Ethernet hub. You can change it to a learning Ethernet
L2 switch as a homework. In this application, the switch will examine each packet
and learn the source-port mapping. Thereafter, the source MAC address will be
associated with the port. If the destination of the packet is already associated with
some port, the packet will be sent to the given port, else it will be flooded on all
ports of the switch. The first step is to start your OpenFlow VM. Then you need to
download the POX into your VM:

$ git clone http://github.com/noxrepo/pox

$ cd pox

Chapter 3

[43]

Running a POX application
After getting the POX controller, you can try running a basic hub example in POX
as follows:

$./pox.py log.level --DEBUG misc.of_tutorial

This command line tells POX to enable verbose logging and to start the of_tutorial
component, which you will be using. This of_tutorial component acts as an Ethernet
hub. Now you can start the Mininet OpenFlow laboratory using the following
command line:

$ sudo mn --topo single,3 --mac --switch ovsk --controller remote

The switches may take a little bit of time to connect. When an OpenFlow switch loses
its connection to a controller, it will generally increase the period between which
it attempts to contact the controller, up to a maximum of 15 seconds. This timer is
implementation specific and can be defined by the user. Since the OpenFlow switch
has not connected yet, this delay may be anything between 0 and 15 seconds. If this
is too long to wait, the switch can be configured to wait no more than N seconds
using the --max-backoff parameter. Wait until the application indicates that
the OpenFlow switch has connected. When the switch connects, POX will print
something like the following:

INFO:openflow.of_01:[Con 1/1] Connected to 00-00-00-00-00-01

DEBUG:samples.of_tutorial:Controlling [Con 1/1]

The first line is from the portion of POX that handles OpenFlow connections.
The second line is from the tutorial component itself.

Now, we verify that the hosts can ping each other, and that all the hosts see the exact
same traffic: the behavior of a hub. To do this, we will create xterms for each host
and view the traffic in each. In the Mininet console, start up three xterms:

mininet> xterm h1 h2 h3

Arrange each xterm so that they're all on the screen at once. This may require
reducing the height to fit on a cramped laptop screen. In the xterms for h2 and h3,
run tcpdump, a utility to print the packets seen by a host:

tcpdump -XX -n -i h2-eth0

And respectively:

# tcpdump -XX -n -i h3-eth0	

The OpenFlow Controllers

[44]

In the xterm for h1, issue a ping command:

ping -c1 10.0.0.2

The ping packets are now going up to the controller, which then floods them out
of all interfaces except the sending one. You should see identical ARP and ICMP
packets corresponding to the ping in both xterms running tcpdump. This is how a
hub works; it sends all packets to every port on the network. Now, see what happens
when a non-existent host doesn't reply. From h1 xterm:

ping -c1 10.0.0.5

You should see three unanswered ARP requests in the tcpdump xterms. If your code
is off later, three unanswered ARP requests is a signal that you might be accidentally
dropping packets. You can close the xterms now.

In order to change the behavior of the hub to a learning switch, you have to add
the learning switch functionality to of_tutorial.py. Go to your SSH terminal and
stop the tutorial hub controller by pressing Ctrl + C. The file you'll modify is pox/
misc/of_tutorial.py. Open pox/misc/of_tutorial.py in your favorite editor.
The current code calls act_like_hub() from the handler for packet_in messages
to implement the switch behavior. You will want to switch to using the act_like_
switch() function, which contains a sketch of what your final learning switch code
should look like. Each time you change and save this file, make sure to restart POX,
then use pings to verify the behavior of the combination of switch and controller as a:

1.	 Hub.
2.	 Controller-based Ethernet learning switch.
3.	 Flow-accelerated learning switch.

For 2 and 3, hosts that are not the destination for a ping should display no tcpdump
traffic after the initial broadcast ARP request. Python is a dynamic and interpreted
language. There is no separate compilation step, just update your code and re-run it.
Python has built-in hash tables, called dictionaries, and vectors, called lists. Some of
the common operations that you need for learning switch are as follows:

•	 To initialize a dictionary:
mactable = {}

•	 To add an element to a dictionary:
mactable[0x123] = 2

Chapter 3

[45]

•	 To check for dictionary membership:
if 0x123 in mactable:
 print 'element 2 is in mactable'
if 0x123 not in mactable:
 print 'element 2 is not in mactable'

•	 To print a debug message in POX:
log.debug('saw new MAC!')

•	 To print an error message in POX:
log.error('unexpected packet causing system meltdown!')

•	 To print all member variables and functions of an object:
print dir(object)

•	 To comment a line of code:

Prepend comments with a #; no // or /**/

You can find more Python resources at the following URLs.
List of built-in functions in Python:
http://docs.python.org/2/library/functions.html

Official Python tutorial:
http://docs.python.org/2/tutorial/

In addition to the preceding mentioned functions, you also need some details about
the POX APIs, which are useful for the development of learning switch. There is also
other documentation available in the appropriate section of POX's website.

Sending OpenFlow messages with POX:

connection.send(...) # send an OpenFlow message to a switch

When a connection to a switch starts, a ConnectionUp event is fired. The example
code creates a new Tutorial object that holds a reference to the associated
Connection object. This can later be used to send commands (OpenFlow messages)
to the switch:

ofp_action_output class

The OpenFlow Controllers

[46]

This is an action for use with ofp_packet_out and ofp_flow_mod. It specifies a
switch port that you wish to send the packet out of. It can also take various special
port numbers. An example of this would be OFPP_FLOOD, which sends the packet out
on all ports except the one the packet originally arrived on. The following example
creates an output action that would send packets to all ports:

out_action = of.ofp_action_output(port = of.OFPP_FLOOD)
ofp_match class

Objects of this class describe packet header fields and an input port to match on.
All fields are optional, items that are not specified are wildcards, and will match on
anything. Some notable fields of ofp_match objects are:

•	 dl_src: The data link layer (MAC) source address
•	 dl_dst: The data link layer (MAC) destination address
•	 in_port: The packet input switch port

Example: Create a match that matches packets arriving on port 3:

match = of.ofp_match()
match.in_port = 3
ofp_packet_out OpenFlow message

The ofp_packet_out message instructs a switch to send a packet. The packet might
be constructed at the controller, or it might be the one that the switch received,
buffered, and forwarded to the controller (and is now referenced by a buffer_id).
Notable fields are:

•	 buffer_id: The buffer_id of a buffer you wish to send. Do not set if you are
sending a constructed packet.

•	 data: Raw bytes you wish the switch to send. Do not set if you are sending
a buffered packet.

•	 actions: A list of actions to apply (for this tutorial, this is just a single
ofp_action_output action).

•	 in_port: The port number this packet initially arrived on, if you are sending
by buffer_id, otherwise OFPP_NONE.

Example: The send_packet() method of_tutorial:

 def send_packet (self, buffer_id, raw_data, out_port, in_port):
 """
 Sends a packet out of the specified switch port.
 If buffer_id is a valid buffer on the switch, use that.
 Otherwise, send the raw data in raw_data.

Chapter 3

[47]

 The "in_port" is the port number that packet arrived on. Use
 OFPP_NONE if you're generating this packet.
 """
 msg = of.ofp_packet_out()
 msg.in_port = in_port
 if buffer_id != -1 and buffer_id is not None:
 # We got a buffer ID from the switch; use that
 msg.buffer_id = buffer_id
 else:
 # No buffer ID from switch -- we got the raw data
 if raw_data is None:
 # No raw_data specified -- nothing to send!
 return
 msg.data = raw_data

 action = of.ofp_action_output(port = out_port)
 msg.actions.append(action)

 # Send message to switch
 self.connection.send(msg)
ofp_flow_mod OpenFlow message

This instructs a switch to install a flow table entry. Flow table entries match some
fields of the incoming packets, and execute a list of actions on the matching packets.
The actions are the same as for ofp_packet_out, mentioned previously (and again,
for the tutorial all you need is the simple ofp_action_output action). The match is
described by an ofp_match object. Notable fields are:

•	 idle_timeout: Number of idle seconds before the flow entry is removed.
Defaults to no idle timeout.

•	 hard_timeout: Number of seconds before the flow entry is removed.
Defaults to no timeout.

•	 actions: A list of actions to be performed on matching packets (for example,
ofp_action_output).

•	 priority: When using non-exact (wildcarded) matches, this specifies the
priority for overlapping matches. Higher values have higher priority. Not
important for exact or non-overlapping entries.

•	 buffer_id: The buffer_id field of a buffer to apply the actions to
immediately. Leave unspecified for none.

The OpenFlow Controllers

[48]

•	 in_port: If using a buffer_id, this is the associated input port.
•	 match: An ofp_match object. By default, this matches everything,

so you should probably set some of its fields.

Example: Create flow_mod, that sends packets from port 3 out of port 4:

fm = of.ofp_flow_mod()
fm.match.in_port = 3
fm.actions.append(of.ofp_action_output(port = 4))

For more information about OpenFlow constants, see the main
OpenFlow types/enums/structs file, openflow.h, in ~/
openflow/include/openflow/openflow.h You may also
wish to consult POX's OpenFlow library in pox/openflow/
libopenflow_01.py, and, of course, the OpenFlow 1.0 specification.

The POX packet library is used to parse packets and make each protocol field
available to Python. This library can also be used to construct packets for sending.
The parsing libraries are present in pox/lib/packet/.

Each protocol has a corresponding parsing file. For the first exercise, you'll only need
to access the Ethernet source and destination fields. To extract the source of a packet,
use the dot notation:

packet.src

The Ethernet src and dst fields are stored as pox.lib.addresses.EthAddr objects.
These can easily be converted to their common string representation (str(addr) will
return something like "01:ea:be:02:05:01"), or created from their common string
representation (EthAddr("01:ea:be:02:05:01")). To see all members of a parsed
packet object:

print dir(packet)

Here's what you'd see for an ARP packet:

['HW_TYPE_ETHERNET', 'MIN_LEN', 'PROTO_TYPE_IP', 'REPLY', 'REQUEST',
'REV_REPLY',
 'REV_REQUEST', '__class__', '__delattr__', '__dict__', '__doc__',
'__format__',
 '__getattribute__', '__hash__', '__init__', '__len__', '__module__',
'__new__',
 '__nonzero__', '__reduce__', '__reduce_ex__', '__repr__', '__
setattr__',
 '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_init',
'err',

Chapter 3

[49]

 'find', 'hdr', 'hwdst', 'hwlen', 'hwsrc', 'hwtype', 'msg', 'next',
'opcode',
 'pack', 'parse', 'parsed', 'payload', 'pre_hdr', 'prev', 'protodst',
'protolen',
 'protosrc', 'prototype', 'raw', 'set_payload', 'unpack', 'warn']

Many fields are common to all the Python objects and can be ignored, but this can be
a quick way to avoid a trip to a function's documentation.

NodeFlow
NodeFlow (http://garyberger.net/?p=537, developed by Gary Berger, Technical
Leader, Office of the CTO of Cisco Systems) is a minimalist OpenFlow controller
written in JavaScript for Node.js (www.nodejs.org). Node.js is a server-side software
system designed for writing scalable Internet applications (for example, HTTP
servers). It can be considered as a packaged compilation of Google's V8 JavaScript
engine, the libuv platform abstraction layer, and a core library, which is written in
JavaScript. Node.js uses an event-driven, non-blocking I/O model that makes it
lightweight and efficient, perfect for data-intensive real-time applications that run
across distributed devices. Programs are written on the server side in JavaScript,
using event-driven, asynchronous I/O to minimize overhead and maximize the
scalability. Therefore, unlike most JavaScript programs, the program is not executed
in a web browser. Instead, it runs as a server-side JavaScript application. NodeFlow
is actually a very simple program and relies heavily on a protocol interpreter called
OFLIB-NODE written by Zoltan LaJos Kis. NodeFlow is an experimental system
available at GitHub (git://github.com/gaberger/NodeFLow) along with a fork of
the OFLIB-NODE libraries (git://github.com/gaberger/oflib-node). The beauty
of NodeFlow is its simplicity on running and understanding an OpenFlow controller
with less than 500 lines of code. Leveraging JavaScript and the high performance
Google's V8 JavaScript engine allows for network architects to experiment with
various SDN features without the need to deal with all of the boilerplate code
required for setting up event driven programming.

The NodeFlow server (that is, OpenFlow controller) instantiates with a simple
call to net.createServer. The address and listening port are configured through
a start script:

NodeFlowServer.prototype.start = function(address, port) {
var self = this
var socket = []
var server = net.createServer()
server.listen(port, address, function(err, result) {
util.log("NodeFlow listening on:" + address + '@' + port)
self.emit('started', { "Config": server.address() })
})

The OpenFlow Controllers

[50]

The next step is to create a unique session ID, from which the controller can
keep track of each of the different switch connections. The event listener maintains
the socket. The main event processing loop is invoked whenever data is received
from the socket channel. The stream library is utilized to buffer the data and
return the decoded OpenFlow message in msgs object. The msgs object is passed
to the _ProcessMessage function for further processing:

server.on('connection',
 function(socket) {
 socket.setNoDelay(noDelay = true)
 var sessionID = socket.remoteAddress + ":" + socket.remotePort
 sessions[sessionID] = new sessionKeeper(socket)
 util.log("Connection from : " + sessionID)

 socket.on('data', function(data) {
 var msgs = switchStream.process(data);
 msgs.forEach(function(msg) {
 if (msg.hasOwnProperty('message')) {
 self._processMessage(msg, sessionID)
 } else {
 util.log('Error: Cannot parse the message.')
 console.dir(data)
 }
})

The last part is the event handlers. EventEmitters of Node.js is utilized to trigger
the callbacks. These event handlers wait for the specific event to happen and then
trigger the processing. NodeFlow handles two specific events: OFPT_PACKET_
IN, which is the main event to listen on for OpenFlow PACKET_IN events, and
SENDPACKET, which simply encodes and sends out OpenFlow messages:

self.on('OFPT_PACKET_IN',
 function(obj) {
 var packet = decode.decodeethernet(obj.message.body.data, 0)
 nfutils.do_l2_learning(obj, packet)
 self._forward_l2_packet(obj, packet)
 })
 self.on('SENDPACKET',
 function(obj) {
 nfutils.sendPacket(obj.type, obj.packet.outmessage,
 obj.packet.sessionID)
 })

Chapter 3

[51]

The simple Net App based on NodeFlow could be a learning switch (following
do_l2_learning function). The learning switch simply searches for the source MAC
address and in case the address is not already in the learning table, it will be inserted
in the corresponding source port to the forwarding table:

do_l2_learning: function(obj, packet) {
 self = this
 var dl_src = packet.shost
 var dl_dst = packet.dhost
 var in_port = obj.message.body.in_port
 var dpid = obj.dpid
 if (dl_src == 'ff:ff:ff:ff:ff:ff') {
 return
 }
if (!l2table.hasOwnProperty(dpid)) {
 l2table[dpid] = new Object() //create object
 }
if (l2table[dpid].hasOwnProperty(dl_src)) {
 var dst = l2table[dpid][dl_src]
 if (dst != in_port) {
 util.log("MAC has moved from " + dst + " to " + in_port)
 } else {
 return
 }
} else {
 util.log("learned mac " + dl_src + " port : " + in_port)
 l2table[dpid][dl_src] = in_port
}
 if (debug) {
 console.dir(l2table)
 }
}

The complete NodeFlow server is called server.js, which can be downloaded from
NodeFlow Git repository. To run the NodeFlow controller, execute the Node.js and
pass the NodeFlow server (that is, server.js) to the Node.js binary (for example,
node.exe on Windows):

C:\ program Files\nodejs>node server.js

The OpenFlow Controllers

[52]

Floodlight
Floodlight is a Java-based OpenFlow controller, based on the Beacon
implementation, which supports both physical and virtual OpenFlow switches.
Beacon is a cross platform, modular OpenFlow controller, also implemented in
Java. It supports event-based and threaded operation. Beacon was created by David
Erickson at Stanford University as a Java-based, and cross platform OpenFlow
controller. Prior to being licensed under GPL v2, Floodlight was forked from
Beacon, which carries on with an Apache license. Floodlight has been redesigned
without the OSGI framework. Therefore, it can be built, run, and modified without
OSGI experience. Besides, Floodlight's community currently includes a number of
developers at Big Switch Networks who are actively testing and fixing bugs, and
building additional tools, plugins, and features for it. The Floodlight controller is
intended to be a platform for a wide variety of network applications (Net Apps).
Net Apps are important, since they provide solutions to real-world networking
problems. Some of the Floodlight's Net Apps are:

•	 The Virtual Networking Filter, which identifies packets that enter the network,
but do not match an existing flow. The application determines whether the
source and destination are on the same virtual network; if so, the application
signals the controller to continue the flow creation. This filter is in fact a simple
layer 2 (MAC) based network virtualization, which enables users to create
multiple logical layer 2 networks in a single layer 2 domain.

•	 The Static Flow Pusher is used to create a flow in advance of the initial packet
in the flow that enters the network. It is exposed via Floodlight's REST API
that allows a user to manually insert flows into an OpenFlow network.

•	 The Circuit Pusher creates a flow and provisions switches along the path
to the packet's destination. The bidirectional circuit between source and
destination is a permanent flow entry, on all switches in the route between
the two devices.

•	 Firewall modules give the same protection to devices on the software-defined
network as traditional firewalls on a physical network. Access Control List
(ACL) rules control whether a flow should be set up to a specific destination.
The Firewall application has been implemented as a Floodlight Module that
enforces ACL rules on OpenFlow enabled switches in the network.
The packet monitoring is done using the packet-in messages.

Chapter 3

[53]

•	 Floodlight can be run as a network plugin for OpenStack using a Neutron.
Neutron plugin exposes a Networking-as-a-Service (NaaS) model via
a REST API that is implemented by Floodlight. This solution has two
components: a VirtualNetworkFilter module in Floodlight (that implements
the Neutron API) and the Neutron RestProxy plugin that connects Floodlight
to Neutron. Once a Floodlight controller is integrated into OpenStack,
network engineers can dynamically provision network resources alongside
other virtual and physical computer resources. This improves the overall
flexibility and performance.

For more details and tutorials see the FloodLight OpenFlowHub page, http://www.
projectfloodlight.org/floodlight/.

OpenDaylight
OpenDaylight is a Linux Foundation Collaborative project (www.opendaylight.
org), in which a community has come together to fill the need for an open and
reference framework for programmability and control through an open source
SDN solution. It combines open community developers, open source code, and
project governance that guarantees an open, community decision-making process
on business and technical issues. OpenDaylight can be a core component within
any SDN architecture. Building upon an open source SDN controller enables users
to reduce operational complexity, extend the lifetime of their existing network
infrastructure, and enable new services and capabilities only available with SDN.
The mission statement of OpenDaylight project can be read as "OpenDaylight
facilitates a community-led industry-supported open source framework, including
code and architecture, to accelerate and advance a common, robust Software-
Defined Networking platform". OpenDaylight is open to anyone. Anyone can
develop and contribute code, get elected to the Technical Steering Committee
(TSC), get voted onto the Board, or help steer the project forward in any number
of ways. OpenDaylight will be composed of numerous projects. Each project will
have contributors, committers, and one committer elected by their peers to be the
Project Lead. The initial TSC and project leads will be composed of the experts who
developed the code that has been originally contributed to the project. This ensures
that the community gets access to the experts most familiar with the contributed
code to ramp up and provide mentorship to new community participants. Among
initial bootstrap projects, OpenDaylight (ODL) controller is one of the early projects,
which we will introduce in the next section, and then we set up our environment for
ODL-based Net App development OpenDaylight is covered with more details in
next chapter (Chapter 4, Setting Up the Environment).

The OpenFlow Controllers

[54]

Special controllers
In addition to the OpenFlow controllers that we introduced in this chapter, there
are also two special purpose OpenFlow controllers: FlowVisor and RouteFlow.
The former acts as a transparent proxy between OpenFlow switches and multiple
OpenFlow controllers. It is able to create network slices and can delegate control
of each slice to a different OpenFlow controller. FlowVisor also isolates these
slices from each other by enforcing proper policies. RouteFlow, on the other hand,
provides virtualized IP routing over OpenFlow capable hardware. RouteFlow can be
considered as a network application on top of OpenFlow controllers. It is composed
by an OpenFlow Controller application, an independent server, and a virtual
network environment that reproduces the connectivity of a physical infrastructure
and runs the IP routing engines. The routing engines generate the forwarding
information base (FIB) into the Linux IP tables according to the configured routing
protocols (for example, OSPF and BGP). These special controllers are presented in
more detail in the further chapters. These controllers are covered in more details in
Chapter 8, Open Source Resources.

Summary
The OpenFlow controller provides the interfaces to the OpenFlow switches on one
side and provides the required API for the development of Net Apps (that is, Network
Applications). In this chapter the overall functionality of OpenFlow (SDN) controllers
were presented and some of the existing implementations (NOX/POX, NodeFlow,
and Floodlight) were explained in more detail. NOX was the first OpenFlow controller
written in Python and C++. POX is a general, open-source SDN controller written in
Python. A learning Ethernet switch Net App, based on the API of POX was presented.
NodeFlow is an OpenFlow controller written in JavaScript for Node.js. Floodlight is
a Java-based OpenFlow controller, based on the Beacon implementation, that works
with physical and virtual OpenFlow switches. FlowVisor and RouteFlow as special
controllers were also presented in this chapter. Now, we have covered all the required
material in order to set up our SDN/OpenFlow development environment. In the next
chapter this environment will be set up.

Setting Up the Environment
In the previous chapters, we introduced the OpenFlow switch and controllers and
in this chapter we will complete and set up the infrastructure and environment for
Net App development. We start with our OpenFlow laboratory based on Mininet
and remote OpenFlow controllers (POX), and then we introduce the OpenDaylight
project and its bootstrap project ODL controller as an SDN controller platform
(with OpenFlow support) that can be used for our Net App development.

Understanding the OpenFlow laboratory
In Chapter 2, Implementing the OpenFlow Switch, we introduced the Mininet network
emulation platform as an OpenFlow laboratory. In this section, we present this
laboratory in more detail as it is going to be part of our development environment.
Mininet uses lightweight virtualization in the Linux kernel to make a single system
look like a complete network. A Mininet host behaves just like a real machine; you
can establish an SSH session into it (if you start up SSH daemon and bridge the
network to your host) and run arbitrary programs (anything that runs on Linux is
available for you to run, from web servers, to Wireshark, to iperf). However, Mininet
uses a single Linux kernel for all virtual hosts; this means that you can't run software
that depends on BSD, Windows, or other operating systems. Currently, Mininet
does not support Network Address Translation (NAT) by default. This means that
your virtual hosts will be isolated from your LAN by default. While this is usually
a good thing, it means that your virtual hosts do not have access to the Internet.
Furthermore, Mininet hosts (that is, virtual hosts) share the host file system and
process ID (PID) space. This means that you have to be careful if you are running
daemons that require configuration in /etc. You also need to be careful not to kill
the wrong processes by mistake.

Setting Up the Environment

[56]

Mininet utilizes specific features built into Linux operating system that allow a
single system to be split into a bunch of smaller "containers", each with a fixed share
of the processing power, combined with a virtual link code that allows links (for
example, Ethernet connections) with accurate delays and speeds (for example, 100
Mbps or 1 Gbps). Internally, Mininet employs lightweight virtualization features in
the Linux kernel, including process groups, CPU bandwidth isolation, and network
namespaces, and combines them with link schedulers and virtual Ethernet links.
A virtual host in Mininet is a group of user-level processes moved into a network
namespace (a container for network state). Network namespaces provide process
groups with exclusive ownership of interfaces, ports, and routing tables (such as,
ARP and IP). The data rate of each emulated Ethernet link in Mininet is enforced by
Linux Traffic Control (tc), which has a number of packet schedulers to shape traffic
to a configured rate. Mininet allows you to set link parameters, and these can even be
set automatically from the command line:

 $ sudo mn --link tc,bw=10,delay=10ms

 mininet> iperf

 ...

 mininet> h1 ping -c10 h2

This will set the bandwidth of the links to 10 Mbps and a delay of 10 ms. Given
this delay value, the round trip time (RTT) should be about 40 ms, since the ICMP
request traverses two links (one to the switch, one to the destination) and the ICMP
reply traverses two links coming back.

You can customize each link using the Python API of Mininet: http://
github.com/mininet/mininet/wiki/Introduction-to-
Mininet.

Each virtual host has its own virtual Ethernet interface(s). A virtual Ethernet
(or veth) pair, acts like a wire connecting two virtual interfaces, or virtual switch
ports; packets sent through one interface are delivered to the other, and each interface
appears as a fully functional Ethernet port to all system and application software.
Mininet typically uses the default Linux bridge or Open vSwitch running in kernel
mode to switch packets across the interfaces as shown in the following figure:

Chapter 4

[57]

Host Operating System (e.g. Windows)

Vhost 2
10.0.0.2

Vhost 3
10.0.0.3

Vhost 4
10.0.0.4

Data path controller
(dpctl)

User-space process

OpenFlow controller (CO)
Listening on port 6633

OpenFlow soft-switch (S1)

Mininet Virtual achine (or Native installation)M
$ sudo mn --topo single,3 --mac --switch ovsk --controller remote

127.0.0.1:6633
(OpenFlow)

127.0.0.1:6634

Virtual Ethernet pairs
Using Linux TC

A sample experimental network inside the OpenFlow Laboratory

The preceding figure presents the virtual hosts, soft switch, and the OpenFlow
controller, which are created inside the Mininet Linux server (or Mininet Linux
VM image). To create this network topology, you can simply enter the following
command in an SSH terminal:

$ sudo mn --topo single,3 --mac --switch ovsk --controller remote

This command line instructs Mininet to start up a 3-host, single-(Open vSwitch-based)
switch topology (--topo single,3), set the MAC address of each host equal to its
IP address (--mac), and point to a remote controller (--controller remote), which
defaults to the localhost. Each virtual host has its own separate IP address. A single
OpenFlow soft-switch in the kernel with 3 ports is also created. Virtual hosts are
connected to the soft-switch with virtual Ethernet links. The MAC address of each
host is set to its IP address. Finally, the OpenFlow soft-switch is connected to a
remote controller.

The examples directory (~/mininet/examples) in the Mininet
source tree includes examples of how to use Mininet's Python API, and
potentially useful code that has not been integrated into the main code
base of Mininet.

Setting Up the Environment

[58]

In addition to the mentioned components, dpctl is a utility that comes with the
OpenFlow reference distribution and enables visibility and control over a single
switch's flow table. It is especially useful for debugging purposes and to provide
visibility over flow state and flow counters. To obtain this information you can poll
the switch on port 6634. The following command in an SSH window connects to the
switch and dumps out its port state and capabilities:

$ dpctl show tcp:127.0.0.1:6634

The following command dumps the flow table of the soft-switch:

$ dpctl dump-flows tcp:127.0.0.1:6634

stats_reply (xid=0x1b5ffa1c): flags=none type=1(flow) cookie=0,
duration_sec=1538s, duration_nsec=567000000s, table_id=0,
priority=500, n_packets=0, n_bytes=0, idle_timeout=0,hard_timeout=0,in_
port=1,actions=output:2

 cookie=0, duration_sec=1538s, duration_nsec=567000000s, table_id=0,
priority=500, n_packets=0, n_bytes=0, idle_timeout=0,hard_timeout=0,in_
port=2,actions=output:1

You can also use dpctl to manually install the necessary flows. For example:

$ dpctl add-flow tcp:127.0.0.1:6634 in_port=1,actions=output:2

$ dpctl add-flow tcp:127.0.0.1:6634 in_port=2,actions=output:1

It will forward packets coming at port 1 to port 2 and vice-versa. This can be checked
by dumping the flow table:

$ dpctl dump-flows tcp:127.0.0.1:6634

By default, Mininet runs Open vSwitch in OpenFlow mode, which requires an
OpenFlow controller. Mininet comes with built-in Controller() classes to support
several controllers, including the OpenFlow reference controller (controller), Open
vSwitch's ovs-controller, and the now-deprecated NOX Classic. You can simply
choose which OpenFlow controller you want when you invoke the mn command:

$ sudo mn --controller ref

$ sudo mn --controller ovsc

$ sudo mn --controller NOX,pyswitch

Each of these examples uses a controller which turns your OVS switch into an
Ethernet learning switch.

Chapter 4

[59]

ovsc is easy to install, but only supports 16 switches. You can install
the reference controller using install.sh -f. You can also install
NOX Classic using install.sh -x, but note that NOX Classic is
deprecated and may not be supported in the future.

External controllers
When you start a Mininet network, each switch can be connected to a remote
controller, which could be in the Mininet VM, outside the Mininet VM, and on your
local machine, or in principle anywhere in the Internet. This setup may be convenient
if you already have a controller framework and development tool installed on the
local host or you want to test a controller running on a different physical machine.
If you want to try this, you have to make sure that your controller is reachable from
Mininet VM and fill in the host IP and (optionally) listening port:

$ sudo mn --controller=remote,ip=[controller IP],port=[controller
listening port]

For instance, to run POX's sample learning switch, you could do something like:

$ cd ~/pox

$./pox.py forwarding.l2_learning

in one window, and in another window, start up Mininet to connect to the remote
controller (which is actually running locally, but outside of Mininet's control):

$ sudo mn --controller=remote,ip=127.0.0.1,port=6633

Note that these are actually the default IP address and port values.
If you generate some traffic (mininet> h1 ping h2) you should
be able to observe some output in the POX window showing that
the switch has connected and that some flow table entries have
been installed.

Setting Up the Environment

[60]

Completing the OpenFlow laboratory
Our OpenFlow laboratory consists of four key building blocks:

•	 A virtualization software, for example, VirtualBox or VMware Player, to host
the Mininet VM

•	 A terminal program with SSH support, for example, PuTTY
•	 An X Server for X11 forwarding, for example, Xming or XQuartz
•	 The Mininet (2.0) VM image

The following figure shows the complete building blocks and setup of the OpenFlow
laboratory that will be used for Net App development. A number of OpenFlow
(and SDN) controller frameworks are readily available and should work readily with
Mininet as long as you start them up and specify the remote controller option with
the correct IP address of the host, where your controller is located and the correct
port that it is listening on. If you are running VirtualBox, you should make sure your
VM has two network interfaces. One should be a NAT interface that can be used
to access the Internet, and the other should be a host-only interface to enable it to
communicate with the host machine. For example, your NAT interface could be eth0
and have a 10.x IP address, and your host-only interface could be eth1 and have a
192.168.x IP address.

Chapter 4

[61]

Internet

Host-only
LAN

Terminal Program with X11 forwarding

X Server

Host Operating System (e.g., Windows, Linux, Mac OS X)

Virtualization software (e.g., VirtualBox or VM are Player)w

Mininet VM image (Ubuntu 12.10 server 64-bit)

Mininet
OpenFlow

Switch

Vhost 1 Vhost 2 Vhost 3

Data path controller
(dpctl)

OpenFlow Controller
(e.g., POX)

$ cd ~/pox
$./pox.py forwarding.I2_learning

127.0.0.1:6633

127.0.0.1:6634

eth1
192.168.x.x

eth0
10.x.x.x

NAT

Host NIC

...
$ sudo mn --controller=remote,ip=127.0.0.1,port=6633

The OpenFlow laboratory environment and building blocks

In VirtualBox you should put the second network interface in the
host-only mode. Select your VM image and go to the settings tab
and then to Network Adapter 2. Select the Enable adapter box, and
attach it to host-only network. This will allow you to easily access
your VM through your host machine.

Now, you have to verify that you can connect from the host PC (your laptop) to
the guest VM (OpenFlow laboratory) via SSH. From the virtual machine console,
log in to the VM (username: mininet, password: mininet), then enter the
following command:

$ ifconfig -a

You should see three interfaces (eth0, eth1, lo), both eth0 and eth1 should have IP
addresses assigned. If this is not the case, type:

$ sudo dhclient ethX

Setting Up the Environment

[62]

Replace ethX with the name of the unnumbered interface. Note down the IP address
of eth1 (probably the 192.168.x.x one) for the host-only network; you will need it
later. Next, using your SSH client (PuTTY, terminal.app, and so on) log in to your
Mininet VM. For example, on a Linux host, enter the following command:

$ ssh -X mininet@[eth1's IP address]

In order to use the X11 applications (xterm and Wireshark), the Xserver must be
running. The next verification is the accessibility of the X server. Try starting up
an X terminal using the xterm command:

$ xterm

and a new terminal window should appear. If you have succeeded, the environment
of the OpenFlow laboratory will be ready and you can close the xterm. If you get
a xterm: Xt error: Can't open display (or similar error), verify your X
server installation.

Under Windows, the Xming server must be running, and you must make an SSH
connection with X11 forwarding enabled. First, start Xming. Xming will not show
any window, but you can verify that it is running by looking for its process in
Window's task bar. Second, make an SSH connection with X11 forwarding enabled.
If you are using PuTTY, you can connect to your OpenFlow laboratory by entering
your VM's IP address (eth1) and enabling X11 forwarding. To enable X11 forwarding
from PuTTY's GUI, go to PuTTYConnection | SSH | X11, then click on Enable X11
Forwarding, as shown in the following screenshot:

Chapter 4

[63]

Enabling X11 forwarding in PuTTY

Alternatively, you can install X11 into the VM itself (that is, inside
your OpenFlow laboratory VM). To install X11 and a simple window
manager, log in to the VM console window (username: mininet,
password: mininet) and type:
$ sudo apt-get update

$ sudo apt-get install xinit flwm

Now, you should be able to start an X11 session in the VM console
window by typing:
$ startx

After establishing an SSH connection to your OpenFlow laboratory VM and logging
in to it (username: mininet, password: mininet), you can start the sample Mininet
network by entering the following command line:

$ sudo mn --topo single,3 --mac --switch ovsk --controller remote

Setting Up the Environment

[64]

Note that since you have not started any OpenFlow controller, you will get an error
message like unable to contact the remote controller at 127.0.0.1:6633.
Since the X11 forwarding is also enabled, you can start Wireshark to be able to
capture the OpenFlow traffic. You can start Wireshark by entering the following
command in your terminal (PuTTY):

mininet@mininet-vm:~$ wireshark &

This will open the Wireshark GUI and you can start capturing the network traffic
and filtering the OpenFlow traffic as explained in Chapter 2, Implementing the
OpenFlow Switch.

Now you can start your remote OpenFlow controller. This controller is in fact
running inside your OpenFlow laboratory VM. So you need to go to your VM
console and enter the following commands:

mininet@mininet-vm:~$ cd pox

mininet@mininet-vm:~/pox$./pox.py forwarding.l2_learning

and after a while your OpenFlow soft-switch in the Mininet will get connected to this
controller. The output of your POX controller should look like the following:

POX 0.0.0 / Copyright 2011 James McCauley

DEBUG:core:POX 0.0.0 going up...

DEBUG:core:Running on CPython (2.7.3/Sep 26 2012 21:51:14)

INFO:core:POX 0.0.0 is up.

This program comes with ABSOLUTELY NO WARRANTY. This program is
free software, and you are welcome to redistribute it under certain
conditions.

Type 'help(pox.license)' for details.

DEBUG:openflow.of_01:Listening for connections on 0.0.0.0:6633

INFO:openflow.of_01:[Con 1/1] Connected to 00-00-00-00-00-01

DEBUG:forwarding.l2_learning:Connection [Con 1/1]

Ready.

POX>

The debug messages of POX show that your OpenFlow switch is connected to the
POX (OpenFlow controller) and behaves as an L2 learning switch. This will conclude
the setup of our OpenFlow laboratory. We managed to set up a network using
Mininet and also starting a remote OpenFlow controller (POX) as an environment
for Net App development. In Chapter 5, Net App Development, we use this laboratory
setup for our sample Net App development. In the next section, we will introduce
another setup based on the OpenDaylight project.

Chapter 4

[65]

OpenDaylight
OpenDaylight is a Linux foundation collaborative project (www.opendaylight.
org), in which a community has come together to fill the need for an open and
reference framework for programmability and control through an open source
SDN solution. It combines open community developers, open source code, and
project governance that guarantees an open, community decision-making process
on business and technical issues. OpenDaylight can be a core component within
any SDN architecture. Building upon an open source SDN controller enables users
to reduce operational complexity, extend the lifetime of their existing network
infrastructure, and enable new services and capabilities only available with SDN.
The mission statement of OpenDaylight project can be read as, "OpenDaylight
facilitates a community-led industry-supported open source framework, including
code and architecture, to accelerate and advance a common, robust Software-
Defined Networking platform". OpenDaylight is open to anyone. Anyone can
develop and contribute code, get elected to the Technical Steering Committee
(TSC), get voted onto the Board, or help steer the project forward in any number
of ways. OpenDaylight will be composed of numerous projects. Each project will
have contributors, committers, and one committer elected by their peers to be the
Project Lead. The initial TSC and project leads will be composed of the experts who
developed the code that has been originally contributed to the project. This ensures
the community gets access to the experts most familiar with the contributed code
to ramp up and provide mentorship to new community participants. Among initial
bootstrap projects, OpenDaylight (ODL) controller is one of the early projects, which
we will introduce in the next section and then we set up our environment for ODL-
based Net App development.

ODL controller
The OpenDaylight (ODL) controller is a highly available, modular, extensible,
scalable, and multi-protocol controller infrastructure built for SDN deployment on
modern heterogeneous multi-vendor networks. The model driven Service Abstraction
Layer (SAL) provides the needed abstractions to support multiple Southbound
protocols (for example, OpenFlow) via plugins. The application oriented extensible
north-bound architecture provides a rich set of Northbound APIs via RESTful web
services for loosely coupled applications and OSGi services for co-located applications.
The OSGi framework, upon which the controller platform is built, is responsible for the
modular and extensible nature of the controller and also provides the versioning and
life-cycle management for OSGi modules and services. The OpenDaylight controller
supports not only the OpenFlow protocol, but also other open protocols to allow
communication with devices which have OpenFlow and/or respective agents. It also
includes a Northbound API to allow customer applications (software), which will
work with the controller in controlling the network.

Setting Up the Environment

[66]

ODL is developed using Java and as a JVM it can run on any hardware platform and
OS provided it supports Java JVM 1.7 and higher. The architecture of ODL is shown
in the following figure:

Network Services Platform API (NB API)

Network Orchestration
Functions

Service Management
Functions

Routing
Djikstra

Stats
Manager

Host
Tracker

Topology
Manager*

Switch
Manager*

Fwdg
Manager*

Network Service Functions

Network Elements

*limited to functionality that is possible via Open Flow 1.0

APIJava native function calls or RPC REST/HTTP

Service Abstraction Layer

Data Collection Network Programming Device Discovery Capability Abstraction

OF 1.0

OpenFlow Libraries

OpenFlow...

...
...

OSGI FrameworkREST

Architecture of ODL Controller

The Southbound ODL controller can support multiple protocols as plugins
(for example, OpenFlow 1.0, PCE, BGP-LS, and so on). It currently supports
OpenFlow 1.0. Other OpenDaylight contributors would add to those as part of
their contributions/projects. These modules are dynamically linked into a Service
Abstraction Layer (SAL). The SAL exposes services to which the modules in
the higher layer serve. The SAL figures out how to fulfill the requested service
irrespective of the underlying protocol used between the controller and the network
elements (OpenFlow switch). This provides investment protection to the applications
as the OpenFlow and other protocols evolve over time. The information regarding
capabilities and reachability of the network devices is stored and managed by the
Topology Manager. The other components (for example, ARP handler, Host Tracker,
Device Manager, and Switch Manager) help in generating the topology database for
the Topology Manager. The Switch Manager API holds the details of the network
element. As a network element is discovered, its attributes (for example, what
switch/router it is, SW version, capabilities, and so on) are stored in the database by
the Switch Manager. The controller exposes open Northbound APIs, which are used
by the applications. ODL controller supports the OSGi framework and bidirectional
REST for the Northbound API. OSGi framework is used for applications that will run
in the same address space as the controller while the REST (web-based) API is used

Chapter 4

[67]

for apps that do not run in the same address space (or even the same hardware/
software platform) as the controller. The business logic and algorithms reside in
the Net Apps. These Net Apps use the controller to gather network intelligence,
runs its algorithm to do analytics, and then use the controller to orchestrate the new
rules throughout the network. The ODL controller supports a cluster-based high
availability model. There are several instances of the ODL controller, which logically
act as one logical controller. This not only gives a fine grain redundancy, but also
allows a scale-out model for linear scalability. The ODL controller has a built-in GUI.
The GUI is implemented as an application using the same Northbound API as would
be available for any other user application.

For more information about the architecture, development infrastructure,
library description, and API references, please refer to ODL controller wiki
page, which is located at: http://wiki.opendaylight.org/view/
OpenDaylight_Controller:Programmer_Guide.

ODL-based SDN laboratory
In this section, we set up our SDN laboratory (with built-in OpenFlow support)
using ODL controller. Our procedure assumes that you are installing ODL controller
on your local Linux machine and you will use the Mininet VM (as detailed in the
previous sections) to create a virtual network. Our host operating system is Windows
7 Enterprise and therefore throughout this section we will use VMware Player to
host another virtual machine (Ubuntu 12.04) for ODL controller. The settings of our
VM are as follows:

•	 2 CPUs, 2 GB RAM, and 20 GB disk space.
•	 Bridged NIC, that puts the VM on the same network as your NIC. You

can bind to wireless or wired. So if your physical host like your laptop is
on 192.168.0.10/24, a VM in bridged mode would get 192.168.0.11/24 or
whatever your DHCP server assigns to it. The point is to have the VM remain
on the same sub network as your host computer.

After logging in to your VM, you have to download the following
pre-requisite software:

•	 JVM 1.7 or higher, for example, OpenJDK 1.7 (JAVA_HOME should be set
to the environment variable)

•	 Git to pull the ODL controller from the Git repository
•	 Maven

Setting Up the Environment

[68]

Install the dependencies and pull down the code using Git:

$ sudo apt-get update

$ sudo apt-get install maven git openjdk-7-jre openjdk-7-jdk

$ git clone http://git.opendaylight.org/gerrit/p/controller.git

$ cd controller/opendaylight/distribution/opendaylight/

$ mvn clean install

$ cd target/distribution.opendaylight-0.1.0-SNAPSHOT-osgipackage/
opendaylight

This will install the required tools and get the ODL controller from the Git
repository. Then Maven will build and install the ODL controller. Apache Maven is
a build automation tool used primarily for Java projects. Please note that building
ODL controller takes a few minutes to be completed.

If your Maven build fails with a Out Of Memory error: PermGen
Space error, re-run Maven using the -X switch to enable full debug
logging. This is due to a memory leak somewhere in the Maven build
and is being tracked as a bug. Instead of mvn clean install you
can run maven clean install -DskipTests and it will skip the
integration tests that seem to be the source of the garbage collector's
leak. You can also address this error by setting maven options:
$ export MAVEN_OPTS="-Xmx512m -XX:MaxPermSize=256m"

The summary at the end of Maven build, will report the successful build of ODL
controller along with the elapsed time and allocated/available memory. Before
running the ODL controller, you have to set up the JAVA_HOME environment variable.
The current value of JAVA_HOME can be viewed with echo $JAVA_HOME command. It
will likely be undefined. Export the JAVA_HOME environment variable. You can write
it to .bashrc, (located in the user home directory) to have it be persistent through
reboots and logins. Place JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-amd64
at the bottom of your ~/.bashrc file or for a one time set:

$ export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-i386 (or -amda64)

You can start the ODL controller by changing the current directory to the location
where the ODL binary is available and start it by run.sh:

$ cd ~/controller/opendaylight/distribution/opendaylight/target/
distribution.opendaylight-0.1.0-SNAPSHOT-osgipackage/opendaylight

$./run.sh

Chapter 4

[69]

ODL controller needs a couple of minutes to get all of its modules loaded. You can
point your browser to 127.0.0.1:8080 to open the ODL controller web interface (see
the following screenshot). The default user name and password is admin (username:
admin, password: admin):

The web-based GUI of ODL controller

Now that we have the ODL controller up and running, we can point the OpenFlow
switch of our OpenFlow laboratory to this controller. ODL controller has been tested
against the Mininet VM, which is part of our OpenFlow laboratory. Launch the
Mininet VM with VMPlayer, VirtualBox, or another virtualization application. Log
in to the Mininet VM (username: mininet, password: mininet). Determine the IP
address of the server hosting ODL controller (for example, $ ifconfig –a), and use
it to start a virtual network:

mininet@mininet-vm:~$ sudo mn --controller=remote,ip=controller-ip --topo
single,3

Setting Up the Environment

[70]

Mininet will connect to the OpenDaylight controller and set up a switch and three
hosts connected to it, as shown in the following screenshot:

The GUI of ODL controller after setting up the network in Mininet

When you point an OpenFlow switch at the OpenDaylight controller, it will pop
up as a device waiting to be configured. The data path ID is the unique key identifier
made up of the switch MAC and an ID assigned by the controller. Mininet will use
all zeroes with a one at the end. OpenFlow uses LLDP for topology discovery by
using packet_out, an instruction in which the controller tells the forwarding
element to do something like send an LLDP discovery. Next, specify the action
for the flowmod (Flow Modification). The following screenshot shows part of a
web-based form that collects the parameter for a flow entry, which can be installed
in the flow table of OpenFlow switches. Here we choose the output port. Remember,
OpenFlow only forwards what you instruct it to do, so either add rules to handle
0×0806 Ethernet type traffic for ARP broadcast requests and unicast replies or delete
the Ethernet type default IPv4 0×0800 value when you add a flowmod. You also
need to set up a match on traffic from port 1 with an action to forward to port 2 along
with the return traffic of matching port 2 with an output action of port 1. You can
specify reserved ports like normal, controller, flood, and all of the others listed in
the drop-down boxes from the OpenFlow v1.0 specification. Choose an action that
can be logical or physical. Logical tend to be named with symbolic representation
while physical is numeric. Ports are learned by the switch sending configuration
information and also updated if a port or link goes down. By adding the proper
flows in the flow table of S1, you can establish a path between hosts and check it by

Chapter 4

[71]

pinging those hosts in Mininet. For troubleshooting you can use dpctl or Wireshark,
which was covered earlier in this chapter and also Chapter 2, Implementing the
OpenFlow Switch.

Adding new flow entry dialog box

Summary
In this chapter we provided a detailed description on our OpenFlow laboratory
based on the Mininet and its role as a network emulator that can be interfaced to
the remote controllers (POX). This setup is the development infrastructure, upon
which we can utilize the Northbound API of the OpenFlow controllers (for example,
POX) to develop Net Apps in the next chapter. Furthermore, we presented the
OpenDaylight project and its boot strap controller (that is, ODL controller), which
can be used as an SDN controller for our development environment. ODL controller
and its northbound interface, which was also interfaced to the Mininet network
emulator, is another promising environment, which we will use in the next chapter
for sample Net App development.

"Net App" Development
Up to this point, we have covered the details about OpenFlow functionalities, and
the role of OpenFlow switch and OpenFlow controllers in the SDN ecosystem. In
Chapter 4, Setting Up the Environment, we setup our development environment and
in this chapter we go through some network applications (Net Apps) using the POX
OpenFlow controller and also the OpenDaylight controller that we introduced and
setup in the previous chapter. Please note that the potentials and capabilities of
OpenFlow controllers are more than the sample Net Apps that we will introduce in
this chapter. However, the goal here is to give an initial push towards the basic steps
in developing Net Apps using OpenFlow framework. In the first part of this chapter,
we will start with our OpenFlow laboratory (based on Mininet) and go through the
operation of an Ethernet hub, an Ethernet learning switch, and a simple firewall. Then,
we will go through the details of a learning switch over the OpenDaylight controller.

"Net App" Development

[74]

Net App 1 – an Ethernet learning switch
Using our Mininet-based OpenFlow laboratory, we are going to set up a simple
network consisting of an OpenFlow switch, three hosts, and an OpenFlow controller
(POX). The topology of the network is shown in the following figure:

127.0.0.1:6633

OpenFlow
switch

127.0.0.1:6634

POX controller

h2

IP: 10.0.0.2
MAC: 00:00:00:00:00:02

h1

IP: 10.0.0.1
MAC: 00:00:00:00:00:01

h3

IP: 10.0.0.3
MAC: 00:00:00:00:00:03

dpctl

Experimental network topology in our OpenFlow laboratory using Mininet.

In addition to the POX controller, we also use the dpctl utility program to examine the
flow table of the OpenFlow switch. As mentioned earlier, OpenFlow switches usually
are listening on port 6634, which is considered for the dpctl (data path controller)
channel. Even without an OpenFlow controller, we can use the dpctl utility program
to communicate with the OpenFlow switch in our OpenFlow laboratory and inspect
flow table entries, or modify flows. In order to set up the network topology, which is
depicted in previous figure inside our Mininet OpenFlow laboratory, we start Mininet
with the following command line parameters:

mininet@mininet-vm:~$ sudo mn --topo single,3 --mac --switch ovsk --

controller remote

Note that Mininet reports that it is not able to connect to the remote controller at
127.0.0.1:6633 (that is localhost:6633).

*** Adding controller

Unable to connect the remote controller at 127.0.0.1:6633

Chapter 5

[75]

In fact, since we have not started any POX controller so far, the OpenFlow switch
is not able to connect to the remote controller (as indicated by --controller
remote in the command line parameters of the Mininet launcher). Please note that
--controller remote by default refers to an OpenFlow controller located on
localhost (that is 127.0.0.1). You can check the IP address and MAC address of h1
(and other hosts) using the following command:

mininet> h1 ifconfig

Now we can try to check the connectivity among the hosts (that is h1, h2, and h3)
using the pingall command of Mininet:

mininet> pingall

The following will be the output:

*** Ping: testing ping reachability

h1 -> X X

h2 -> X X

h3 -> X X

*** Results: 100% dropped (6/6 lost)

These results show that the hosts (in spite of being physically connected to each
other) in the current topology are not logically connected (are not reachable) to each
other through the switch due to lack of any flow entry rule in the flow table of the
switch. We can dump the content of the flow table of the OpenFlow switch using
the following command (you need to establish an SSH terminal connection to your
Mininet VM to issue this command):

mininet@mininet-vm:~$ dpctl dump-flows tcp:127.0.0.1:6634

The following will be the output:

status reply (xid=0xf36abb08): flags=none type=1 (flow)

Before attaching the POX controller to our network topology, in which the controller
will play the role of an Ethernet hub, we quickly review the operation of an Ethernet
hub. An Ethernet hub (that is an active hub, multiport repeater) is a device for
connecting multiple Ethernet devices together and making them act as a single
network segment. It has multiple input/output ports, in which a signal introduced at
the input of any port appears at the output of every port except the original incoming
one. No forwarding information is stored in the switch. The hub functionality is
implemented in the hub.py code of POX distribution (developed by James McCauley).
This program (along with the L2 learning switch) is located at the ~/pox/pox/
forwarding directory.

"Net App" Development

[76]

Looking at hub.py, we can find the launch method, which simply adds a listener for
OpenFlow switches to connect to it:

def launch ():

 core.openflow.addlisternetByName("connectionUp", _handle_
ConnectionUp)

 log.info("Hub running.")

The _handle_connectionUp method, which is another method in hub.py, simply
generates an OpenFlow message for the OpenFlow switch. The action, which is
appended to the message, simply floods the packet on all ports of the OpenFlow
switch (except the incoming port). The generated message is then sent to the
OpenFlow switch in our experimental network topology:

def _handle_ConnectionUp (event):

 msg= of.ofp_flow_mod()

 msg.actions.append(of.ofp_action_output(port= of.OFPP_FLOOD))

 event.connection.send(msg)

 log.info("Hubifying %s", dpidToStr(event.dpid))

So the event handler (that is _handle_ConnectionUp), simply receives an event
from the OpenFlow switch and then caches a Flooding rule inside the flow table
of the switch. Let us start the POX controller with the following hub functionality:

mininet@mininet-vm:~/pox$./pox.py forwarding.hub

The following will be the output:

POX POX 0.0.0 / Copyright 2011 James McCauley

INFO:forwarding.hub:Hub running.

DEBUG:core:POX 0.0.0 going up...

DEBUG:core:Running on CPython (2.7.3/Sep 26 2012 21:51:14)

INFO:core:POX 0.0.0 is up.

This program comes with ABSOLUTELY NO WARRANTY. This program is
free software, and you are welcome to redistribute it under certain
conditions.

Type 'help(pox.license)' for details.

DEBUG:openflow.of_01:Listening for connections on 0.0.0.0:6633

Ready.

POX> INFO:openflow.of_01:[Con 1/1] Connected to 00-00-00-00-00-01

INFO:forwarding.hub:Hubifying 00-00-00-00-00-01

Chapter 5

[77]

Note that upon the start of the POX controller (functioning as an Ethernet hub), an
information message confirms that the OpenFlow switch is connected to the POX
controller. The data path identification (dpid) of the switch is also printed out as
00-00-00-00-00-01. You can return back to the Mininet command prompt and
issue the net command to see the network elements, in which C0 (controller 0) will
also be printed out. Now, we can try to pingall hosts in our topology using the
pingall command of Mininet.

mininet> pingall

The following will be the output:

*** Ping: testing ping reachability

h1 -> h2 h3

h2 -> h1 h3

h3 -> h1 h2

*** Results: 0% dropped (0/6 lost)

And we can also use dpctl (from our new SSH terminal) to see the content of the
flow table of our OpenFlow switch:

mininet@mininet-vm:~$ dpctl dump-flows tcp:127.0.0.1:6634

The following will be the output:

stats_reply (xid=0x2f0cd1c7): flags=none type=1(flow)

 cookie=0, duration_sec=800s, duration_nsec=467000000s, table_id=0,

priority=32768, n_packets=24, n_bytes=1680,

idle_timeout=0,hard_timeout=0,actions=FLOOD

So, we started our experimental network topology in Mininet and made its
OpenFlow switch get connected to the POX controller, which was behaving like
an Ethernet hub. The interesting point about our first Net App is that just by 12
lines of code in Python (that is hub.py), we managed to perform the Ethernet hub
functionality in the network.

"Net App" Development

[78]

Building the learning switch
Now, we change and enhance the behavior of our OpenFlow switch to an intelligent
(learning) Ethernet switch. Let us review the operation of a learning switch. When
a packet arrives to any port of the learning switch, it can learn that the sending host
is located on the port on which the packet has arrived. So, it can simply maintain
a lookup table that associates the MAC address of the host with the port on which
they are connected to the switch. So the switch stores the source MAC address of
the packet, along with the incoming port in its lookup table. Upon receiving a packet,
the switch looks up the destination MAC address of the packet and in case of a
match, the switch figures out the output port and instead of flooding the packet, it
simply sends the packet to its correct destination host (through the looked up port).
In the OpenFlow paradigm, each incoming packet basically generates a new rule in
the flow table of the OpenFlow switch. In order to observe this behavior, we
re-start our experimental network with the l2_learning switch (that is l2_learning.
py) functionality. The learning switch algorithm, which is implemented in the
l2_learning.py script, consists of the following steps:

•	 The first step is to use the source MAC address of the packet and the switch
port to update the switching lookup table (that is the address/port table),
maintained inside the controller as a hash table.

•	 The second step is to drop a certain type of the packets (packets with
Ethertype of LLDP or packets with a bridge filtered destination address).

•	 In the third step, the controller checks if the destination address is a multicast
address. In that case, the packet is simply flooded.

•	 If the destination MAC address of the packet is not already inside the
address/port table (that is the hash table, which is maintained inside the
controller), then the controller instructs the OpenFlow switch to flood the
packet on all ports (except the incoming one).

•	 If the output port is the same as the input port, the controller instructs the
switch to drop the packet to avoid loops.

•	 Otherwise the controller sends a flow table entry modification command
(that is flow mod) to the switch, using the source MAC address and
corresponding port, which instructs the switch that the future packets,
which are addressed to that specific MAC address, will be sent to the
associated output port (rather than flooding).

In order to see the learning switch behavior of our setup we first clean up the existing
setup and start our experimental network again:

mininet@mininet-vm:~$ sudo mn –c

… (screen messages are removed)

Chapter 5

[79]

mininet@mininet-vm:~$ sudo mn --topo single,3 --mac --switch ovsk --
controller remote

Now, using another SSH terminal, we connect to our Mininet VM and start the POX
controller, which executes the Ethernet L2 (Layer 2) learning switch algorithm:

mininet@mininet-vm:~/pox$./pox.py forwarding.l2_learning

Upon startup of the POX controller, as the Ethernet hub case, we can observe
that the OpenFlow switch will get connected to the controller. Now if we go back
to the Mininet console and issue the pingall command, we will see that all hosts
are reachable.

mininet> pingall

The following will be the output:

*** Ping: testing ping reachability

h1 -> h2 h3

h2 -> h1 h3

h3 -> h1 h2

*** Results: 0% dropped (0/6 lost)

So far, the behavior is like the Ethernet hub case. However, if we dump the flow table
of the switch (using the dpctl program), we can observe a bunch of different flow
table entries. In fact, the flow table entries show different destination MAC addresses
along with the associated output ports that incoming packets addressed to that MAC
should be forwarded to. For instance, packets addressed to 00:00:00:00:00:03 will
be forwarded to the output port number 3.

mininet@mininet-vm:~$ dpctl dump-flows tcp:127.0.0.1:6634

The following will be the output:

stats_reply (xid=0xababe6ce): flags=none type=1(flow)

 cookie=0, duration_sec=7s, duration_nsec=912000000s, table_id=0,

priority=32768, n_packets=1, n_bytes=98,

idle_timeout=10,hard_timeout=30,icmp,dl_vlan=0xffff,dl_vlan_pcp=0x00,

dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:03,nw_src=10.0.0.2,nw_

dst=10.0.0.3,nw_tos=0x00,icmp_type=0,icmp_code=0,actions=output:3

…

…

(more entries are not shown)

"Net App" Development

[80]

Let's take a look at the Python code (that is l2_learning.py), which implements
the Ethernet learning switch functionality. The launch method as usual registers
the l2_learning object with the core POX controller. Upon being instantiated, the
l2_learning object adds a listener to ensure that it can handle connection up events
from OpenFlow switches that connect to this controller. This object then instantiates
the learning switch object and passes the connection event to that object (see the
highlighted code in the following):

…
…
class l2_learning (EventMixin):
 """
 Waits for OpenFlow switches to connect and makes them learning
switches.
 """
 def __init__ (self, transparent):
 self.listenTo(core.openflow)
 self.transparent = transparent

 def _handle_ConnectionUp (self, event):
 log.debug("Connection %s" % (event.connection,))
 LearningSwitch(event.connection, self.transparent)

def launch (transparent=False):
 """
 Starts an L2 learning switch.
 """
 core.registerNew(l2_learning, str_to_bool(transparent))

Going through the learning switch object, we can observe that upon instantiation of
the address/port, the hash table is created (that is self.macToPort= {}) a listener
is registered for the packet-in messages (that is connection.addListeners(self))
and then we can see the packet-in handler method (that is _handle_PacketIn
(self, event)). The learning switch algorithm portion of the code is as follows:

 self.macToPort[packet.src] = event.port
 if not self.transparent:
 if packet.type == packet.LLDP_TYPE or
 packet.dst.isBridgeFiltered():
 drop()
 return
 if packet.dst.isMulticast():
 flood()
 else:

Chapter 5

[81]

 if packet.dst not in self.macToPort:
 log.debug("Port for %s unknown -- flooding" %
 (packet.dst,))
 flood()
 else:
 port = self.macToPort[packet.dst]
 if port == event.port:
 log.warning("Same port for packet from %s -> %s on %s.
 Drop." %
 (packet.src, packet.dst, port), dpidToStr(event.dpid))
 drop(10)
 return
 log.debug("installing flow for %s.%i -> %s.%i" %
 (packet.src, event.port, packet.dst, port))
 msg = of.ofp_flow_mod()
 msg.match = of.ofp_match.from_packet(packet)
 msg.idle_timeout = 10
 msg.hard_timeout = 30
 msg.actions.append(of.ofp_action_output(port = port))
 msg.buffer_id = event.ofp.buffer_id
 self.connection.send(msg)

The first step is to update the address/port hash table (that is self.
macToPort[packet.src] = event.port). This will associate the MAC address of
the sender to the switch port on which the packet has been received by the switch.
Certain types of the packets are dropped. Multicast traffic is properly flooded. If the
destination of the packet is not available in the address/port hash table, the packet
is also flooded. If the input and output ports are the same, then the packet will be
dropped to avoid loop (if port == event.port:). Finally, a proper flow table
entry gets installed inside the flow table of the OpenFlow switch. In summary, the
l2_learning.py program implements the required logic and algorithm to change
the behavior of our OpenFlow switch to an Ethernet learning switch one. In the next
section, we will take one more step to change the learning switch to a simple firewall.

"Net App" Development

[82]

Net App 2 – A simple firewall
In this section, we take the learning switch Net App and extend it to make
packet forwarding decisions based on simple firewall rules that we install at the
OpenFlow controller (POX). We are following two important goals in this Net App
development. The first one is to demonstrate how easy it is to change the behavior
of the network device (OpenFlow switch) by just simply changing the Net App at
the OpenFlow controller. The second goal is to give more information about POX
controller. In our simple firewall Net App, we want the switch to make drop or
forwarding decisions based on the value of the source MAC address of the packets.
The experimental network will be the one that is shown in the previous figure.
However, we augment the l2_learning.py Net App (that is L2 learning switch) to
perform the functionality of a simple firewall. Therefore, we copy the l2_learning.
py program with a new name (for instance, simple_firewall.py) and add the
firewall logic and rules on top of the L2 learning switch intelligence. This extension
simply checks the source MAC address of the incoming packets and based on the
outcome of comparison with the firewall rules, it will forward or drop the packet.
If the controller decides that the packet should be forwarded, then it proceeds to
perform the L2 switching functions as earlier. So, the new step after updating the
address/port table of the L2 learning switch will be:

•	 Check the source MAC address of the incoming packet against the
firewall rules

This requires only a few simple additions to the learning switch code. First, we
need a hash table to store the (switch, source MAC) pairs. It maps the (switch,
source MAC) to a true or false logical value indicating whether the packet should
be forwarded or dropped. The controller will decide to drop the incoming packet if
there is a firewall entry that maps to false (that is FirewallTable(switch, Source
MAC) == False), or if there is no firewall entry for that source MAC address in the
firewall hash table. The controller will decide to forward the traffic only if there is a
FirewallTable entry that maps to true. These checks can be added to the learning
switch code as follows:

…
 # Initializing our FirewallTable
 self.firewallTable = {}
 # Adding some sample firewall rules
 self.AddRule('00-00-00-00-00-01',EthAddr('00:00:00:00:00:01'))
 self.AddRule('00-00-00-00-00-01',EthAddr('00:00:00:00:00:03'))
…
…
 # Check the Firewall Rules
 if self.CheckFirewallRule(dpidstr, packet.src) == False:
 drop()
 return

Chapter 5

[83]

The CheckFirewallRule method simply performs the required firewalling
operation. Basically it only returns True if the firewall table has a rule for the given
source MAC address.

 # check if the incoming packet is compliant to the firewall rules
before normal proceeding
 def CheckFirewallRule (self, dpidstr, src=0):
 try:
 entry = self.firewallTable[(dpidstr, src)]
 if (entry == True):
 log.debug("Rule (%s) found in %s: FORWARD",
 src, dpidstr)
 else:
 log.debug("Rule (%s) found in %s: DROP",
 src, dpidstr)
 return entry
 except KeyError:
 log.debug("Rule (%s) NOT found in %s: DROP",
 src, dpidstr)
 return False

In this example, the firewall rules are set in a way that only packets from MAC
addresses 00:00:00:00:00:01 and 00:00:00:00:00:03 will be processed and
forwarded by the switch, and other traffic is simply dropped. Now we can start
Mininet and the POX controller with our firewall Net App as follows:

mininet@mininet-vm:~$ sudo mn --topo single,3 --mac --switch ovsk --

controller remote

…

Run the following command on another SSH terminal:

mininet@mininet-vm:~/pox$./pox.py log.level --DEBUG

forwarding.simple_firewall.py

Note that we have passed additional command line parameters to the POX controller
to be able to see detailed debugging messages of the POX controller while running
our firewall Net App. Since there is no rule in the firewall table that allows h2 to
forward its traffic, we should expect that the pingall command confirms this
expected behavior:

mininet> pingall

"Net App" Development

[84]

The following will be the output:

*** Ping: testing ping reachability

h1 -> X h3

h2 -> X X

h3 -> h1 X

*** Results: 66% dropped (4/6 lost)

We can also see from the POX debugging messages that the controller decided
to forward or drop different packets depending on the value of the source MAC
address of the incoming packets. It is also interesting to note that when the controller
decides to forward a packet, it also caches a rule in the flow table of the OpenFlow
switch that allows that packet to be forwarded. As long as that entry remains in the
flow table, all packets that match the flow entry table can continue to be forwarded
at the switch. This caching (that is limited duration of flow entry existence in the flow
table of the switch) introduces some performance impact on the switch operation.
By caching, we are referring to the availability of a flow entry in the flow table of the
switch, which allows the high-speed forwarding of packets without any controller
involvement. Forwarding performance is degraded when the first packet of a flow
(traffic stream of packets) needs to wait for the forwarding decision of the controller.
This effect is usually referred to as first packet delay of a flow. Let's have it this way:
host 1 pings host 3. From the ping output we can observe that the first packet is
observing high latency since the flow table of the switch is empty and the OpenFlow
switch should contact the controller. After caching the instruction in the flow table
of the switch, packets are forwarded by the switch. After about 30 seconds, the
flow table entry expires and again we observe relatively higher latency between the
two end hosts (which are h1 and h3) since once again the traffic is redirected to the
controller. Following is the command:

mininet> h1 ping h3

Chapter 5

[85]

The following will be the output:

PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.

64 bytes from 10.0.0.3: icmp_req=1 ttl=64 time=38.6 ms

64 bytes from 10.0.0.3: icmp_req=2 ttl=64 time=0.264 ms

64 bytes from 10.0.0.3: icmp_req=3 ttl=64 time=0.056 ms

…

64 bytes from 10.0.0.3: icmp_req=32 ttl=64 time=26.8 ms

64 bytes from 10.0.0.3: icmp_req=33 ttl=64 time=0.263 ms

64 bytes from 10.0.0.3: icmp_req=34 ttl=64 time=0.053 ms

Net App 3 – simple forwarding in
OpenDaylight
In Chapter 4, Setting Up the Environment, we also set up an SDN laboratory based on
the OpenDaylight controller. In this section we will go through a sample forwarding
application, which is available on OpenDaylight distribution. The OpenDaylight
controller includes a Net App called Simple Forwarding that lets you use the basic
services for making forwarding decisions and installing flows across all devices on the
OpenFlow network. This application discovers the presence of a host via ARP message
and installs destination-only /32 entries across all switches in the network, along with
the corresponding output ports towards that host. Please refer to Chapter 4, Setting Up
the Environment, for instruction on setting up the SDN laboratory. However, please
note that the Mininet network should be setup using the following command:

sudo mn --controller=remote,ip=<OpenDaylight IP> --topo tree,3

"Net App" Development

[86]

With OpenDaylight Controller and Mininet running as described in the previous
chapter, log into the OpenDaylight web interface. Drag and drop devices to organize
the topology into its logical arrangement (that is the tree topology), then save the
configuration. Click on the Add Gateway IP Address button and add the IP and
subnet of 10.0.0.254/8 (see the following screenshot). This will properly initiate the
requests to the OpenFlow controller and update the flow table of switches accordingly.

The tree topology of Mininet network inside the web interface of OpenDaylight GUI.

Chapter 5

[87]

On the console where Mininet is running, issue the pingall command to confirm
that all hosts are now reachable from one another. Click on the Troubleshoot tab
and then load the flow details for one of the switches. View the port details
(following screenshot).

The port details in the OpenDaylight GUI.

On the OSGI console (the command line interface of the console, where the
ODL controller had been started), type ss simple. You will see that the Simple
Forwarding app is ACTIVE, as shown in the following figure:

Status of simple forwarding application in the OSGI console

"Net App" Development

[88]

Summary
In this chapter, we presented sample network applications, which utilized the
OpenFlow and SDN controllers as a platform to perform networking applications.
In particular, we started with a simple hub functionality over the POX controller
and then we moved towards Layer 2 learning switching functionality. By adding
more logic to this learning switch, we demonstrated how easily we can perform
packet inspection as it could be done in a simple firewall by extending the learning
switch. Finally, we showed simple packet forwarding Net App, which utilized
the OpenDaylight SDN controller. In the next chapter, we will look at network
virtualization and how to get a network slice.

Getting a Network Slice
In this chapter, network slicing with FlowVisor is discussed. The following topics
will be covered:

•	 Network virtualization
•	 FlowVisor as an open source tool for OpenFlow based network slicing
•	 FlowVisor API, flow match, and slice action structures
•	 Network slicing using Mininet

Network virtualization
Network virtualization is a particular abstraction of the physical networking
infrastructure that provides the support for multiple logical (virtual) network
infrastructures (for example, a set of switches, routes, and links) on top of
a common physical (real) infrastructure.

Getting a Network Slice

[90]

The analogy of network virtualization is depicted in the following figure:

Physical CPU, Memory, IO

Virtual
Network

L2, L3, L4-7 Network Services

Workload

Server Hypervisor

Workload Workload

Virtual
Network

Virtual
Network

Physical Network

Requirement: IP Transport

Network & Security Virtualization

Virtual
Machine

Virtual
Machine

Virtual
Machine

x86 Environment

Application Application Application

Requirement: x86
Server HypervisorServer Hypervisor Decoupled

The analogy of computer virtualization and network virtualization

On the left side of this figure, we can see a conventional computer virtualization,
which is the virtual machine environment. In this environment the physical
processor (CPU), memory, and Input/output are abstracted by a hypervisor, on
top of which, a virtual machine can be run. This hypervisor essentially ensures the
isolation of access to underlying resources and resource management. Similarly, a
physical network can also be virtualized. On the right side of the preceding figure,
the network virtualization layer shown, is responsible for providing an isolated
view of the physical network infrastructure. Building a virtual network requires
the technology to build virtual nodes (for example, Xen Virtual Machine Monitor,
Linux network namespaces, Kernel-based Virtual Machine (KVM), VMware, and
VirtualBox). There are also other possible ways to create virtual links. These are
essentially based on tunneling technology. One possibility is to get an Ethernet frame
of a virtual node and encapsulate it in an IP packet that may travel through multiple
hops in the network. This technique essentially provides a virtual Ethernet link
using tunneling technology (for example, Ethernet Generic Routing Encapsulation
(GRE) Tunneling, Virtual Extensible Local Area Network (VxLAN), Stateless
Transport Tunneling (STT), among others). There are also technologies such as Open
vSwitch that provide virtual switches. It's worth mentioning that Software-defined
Network (SDN) separates the data plane and the control plane, but the goal of
network virtualization is to construct multiple virtual networks on top of a physical
networking infrastructure.

Chapter 6

[91]

FlowVisor
An SDN can have some level of logical decentralization, with multiple logical
controllers. An interesting type of proxy controller, called FlowVisor, can be utilized
to add a level of network virtualization to OpenFlow networks and allow multiple
controllers to simultaneously control overlapping sets of physical switches. Initially
developed to allow experimental research to be conducted on deployed networks
alongside production traffic, it also facilitates and demonstrates the ease of deploying
new services in SDN environments. FlowVisor can be considered as a special
purpose OpenFlow controller that acts as a transparent proxy between OpenFlow
switches on one side and multiple OpenFlow controllers on the other side, as
depicted in the following figure:

Apps

Network OS

IP-Peering
and others

ONOS

FlowVisor

Mininet

Forwarding

Te
st

in
g

AppsApps

Network OS

Apps

Network Hypervisor

FlowVisor as a network slicer.

FlowVisor creates rich "slices" of network resources and delegates control of each
slice to a different controller and also promotes isolation between slices. FlowVisor,
originally developed at Stanford University, has been widely used in experimental
Research and Education networks to support slicing where multiple experimenters get
their own isolated slice of the infrastructure and control it using their own network OS
and a set of control and management applications. FlowVisor enables you to conduct
network research in real production environments and using real network traffic. As
an open source proxy controller, you can customize the code to adapt to your needs;
with a configuration and monitoring interface in JavaScript Object Notation (JSON) for
users, and a Java programming language for developers, everyone has the ability to
customize by opting to different services. You can freely and quickly experiment with
SDN with all the foundational SDN functions that enable you to learn about network
virtualization and test new methods for deploying services rapidly. Since it is based
on open standards that can run on a multi-vendor infrastructure, it supports multiple
vendors (for example, NEC, HP, Pronto, OVS, and so on), as well as multiple guest
network OSes (for example, OpenFlow controllers).

Getting a Network Slice

[92]

You can find more information about FlowVisor and source code at:
http://www.flowvisor.org. The instruction for installation from
binary is given here: http://github.com/OPENNETWORKINGLAB/
flowvisor/wiki/Installation-from-Binary

FlowVisor API
FlowVisor is able to provide slices of network resources and convey the control
of each slice to a different OpenFlow controller. Slices can be defined by any
combination of packet contents from layer 1 to 4 including:

•	 Switch ports (layer 1)
•	 Source/destination Ethernet MAC address or Ethernet type (layer 2)
•	 Source/destination IP addresses or type (layer 3)
•	 Source/destination TCP/UDP port or ICMP code/type (layer 4)

FlowVisor provides and enforces slice isolation. This isolation means that the data
traffic in one slice cannot be captured by hosts in the other slice. The FlowVisor API
is transiting from XML-RPC to JSON. The XML-RPC API will remain as is but in a
deprecated state and eventually it will be removed from the API. FlowVisor users
are advised to migrate any of their dependencies on the FlowVisor API to the JSON
interface. The API syntax may change in some areas. Please check the latest FlowVisor
documentation for the updated syntax. A command line tool can be used to access the
API of FlowVisor. This tool is named fvctl. For example, the following command line
shows how the list-slices is invoked using the fvctl command line tool:

$ fvctl list-slices

The FlowVisor API includes the following commands:

•	 The list-slices command can be used to list the currently configured
slices.

•	 The list-slice-info <slicename> command shows the URL address
of the control, which controls the specified slicename. In addition, the
information of the slice owner, who has created the slice and his/her
contact information will be shown.

•	 The add-slice <slicename> <controller_url> <email> command
creates a new slice. The slicename cannot contain any of the following
special characters, !, :, =, [,], or new lines. The format of the URL address
of the controller is specified as tcp:hostname[:port] like tcp:127.0.0.1:12345.
The default port (if not specified) is 6633. The e-mail address is used as the
administrative contact point of the slice.

Chapter 6

[93]

•	 The update-slice <slicename> <key> <value> command enables a slice
user to modify the information, which is associated with their slice. Only
contact_email, controller_host, and controller_port can be changed
as of writing this.

•	 The list-flowspace command prints the flow-based slice policy roles,
which are also called flowspace.

•	 The remove-slice <slicename> command deletes a slice and releases
all of the flowspace, which is corresponding to the slice.

•	 The update-slice-password <slicename> command changes the
password, which is associated to the slicename parameter.

•	 The add-flowspace <NAME> <DPID> <PRIORITY> <FLOW_MATCH>
<SLICEACTIONS> command creates a new slice policy rule (flowspace) with
its given NAME. The format of DPID, FLOW_MATCH, and SLICEACTIONS
are explained in the following subsections.

•	 The update-flowspace <NAME> <DPID> <PRIORITY> <FLOW_MATCH>
<SLICEACTIONS> command modifies the slice policy rule, which is indicated
by the NAME parameter with a new rule with the specified parameters. The
format of DPID, FLOW_MATCH, and SLICEACTIONS are explained in the
following subsections.

•	 The remove-flowspace <NAME> command deletes the policy rule with the
specified NAME.

FLOW_MATCH structure
How a flow matches an incoming packet is explained in the following field
assignments. The FLOW_MATCH field is treated as a wildcard if any of these assignment
statements are removed from the syntax of a flow. Therefore, if all of these fields are
removed, then the resulting flow matches all packets; all or any can be used to specify
a flow that matches all packets.

•	 The in_port=port_no assignment matches the physical port port_no with
the port number of the incoming packet. Switch ports are numbered, as they
are listed by the fvctl getDeviceInfo DPID command.

•	 The dl_vlan=vlan assignment matches the IEEE 802.1Q virtual LAN tag
vlan with the value of the VLAN in the incoming packet. In order to match
packets, which are not tagged with a VLAN, you can specify 0xffff as the
value of the vlan parameter. Otherwise, specify a numeric value between 0
and 4095 (inclusive) as the 12-bit VLAN ID to match.

Getting a Network Slice

[94]

•	 The dl_src=mac assignment matches the Ethernet source MAC address
mac. This MAC address should be specified as 6 pairs of hexadecimal digits
delimited by colons, like 00:0A:E4:25:6B:B0.

•	 The dl_dst=mac assignment matches the Ethernet destination
MAC address mac.

•	 The dl_type=ethertype assignment matches Ethernet protocol type
ethertype, which should be specified as an integer between 0 and 65535
(inclusive) either in decimal or as a hexadecimal number prefixed by 0x
(for instance to match ARP packets, you can specify 0x0806 as the value
of ethertype).

•	 The nw_src=ip[/netmask] assignment matches the IPv4 source address ip
(specified as an IP address, for example 192.168.0.1). The optional netmask
provides a mechanism to only match on the prefix of an IPv4 address. The
netmask is specified as CIDR-style, that is, for example, something like
192.168.1.0/24.

•	 The nw_dst=ip[/netmask] assignment matches the IPv4 destination address
ip with the destination address of the incoming packet. netmask allows the
prefix matching (for instance 192.168.1.0/24).

•	 The nw_proto=proto assignment matches the IP protocol type proto field,
which should be specified as an integer value between 0 and 255 (for instance
6 to match the TCP packets).

•	 The nw_tos=tos/dscp assignment matches the ToS/DSCP field of IPv4
header value tos/dscp with the same quantity of the incoming packets.
This value should be specified as an integer value between 0 and 255.

•	 The tp_src=port assignment matches the transport-layer (for instance TCP,
UDP, or ICMP) source port port. It should be specified as an integer value
between 0 and 65535 (in the case of TCP or UDP) or between 0 and 255 (in
the case of ICMP).

•	 The tp_dst=port assignment matches the transport-layer destination port.
The value should be in the same range that was mentioned for the transport
layer source port.

Slice actions structure
Slice actions is a list of slices that have control over a specific flowspace. This list is
comma separated and the slice actions are of the form Slice:slicename1=perm[Slice:s
licename2=perm[...]]. Each slice possibly has three types of access permissions over
a flowspace, which are: DELEGATE, READ, and WRITE. Permissions are currently
specified as an integer bitmask value. The assignment is: DELEGATE=1, READ=2,
WRITE=4. So, Slice:alice=5,bob=2 would give DELEGATE and WRITE (1+4 = 5)
permissions to the alice's slice and only read permission to bob.

Chapter 6

[95]

FlowVisor slicing
In this section, you will learn how to slice your OpenFlow network, construct
logical networks over a physical infrastructure, and have each slice controlled by
an OpenFlow controller. You will also learn, during this process, the concept of
flowspaces and how the centralized control feature of OpenFlow provides flexible
network slicing. The network topology for this exercise is shown in the following
figure, which includes four OpenFlow switches and four hosts. Switches s1 and s4
are connected to each other through s2 via a low bandwidth connection (that is 1
Mbps and defined as LBW_path in the following custom topology script in Mininet)
and are also connected to each other via s3 through a high bandwidth (that is 10
Mbps, defined as HBW_path in the custom script in Mininet) set of links:

h2
10.0.0.2

s3
dpid: 3

h4
10.0.0.4

port: 2port: 4

port: 1 port: 2

port: 2 port: 4

10
Mb/s

10
Mb/s

h1
10.0.0.1

s1
dpid: 1

s2
dpid: 2

s4
dpid: 4

h3
10.0.0.3

port: 1port: 3

port: 1 port: 2

port: 1 port: 3

Site A Site B

Network topology

This network topology can be constructed using the following Mininet script
(assuming that the flowvisor_topo.py file is available in the current directory).
Mininet installation was presented in Chapter 2, Implementing OpenFlow Switch
utilized as part of the OpenFlow laboratory in Chapter 4, Setting Up the Environment:

 $ sudo mn --custom flowvisor_topo.py --topo slicingtopo --link tc
--controller remote --mac --arp

The customized Python script defines a topology named slicingtopo, which then
becomes accessible on the command line of Mininet.

#!/usr/bin/python
flowvisor_topo.py
from mininet.topo import Topo
class FVTopo(Topo):
 def __init__(self):
 # Initialize topology

Getting a Network Slice

[96]

 Topo.__init__(self)
 # Create template host, switch, and link
 hconfig = {'inNamespace':True}
 LBW_path = {'bw': 1}
 HBW_path = {'bw': 10}
 host_link_config = {}
 # Create switch nodes
 for i in range(4):
 sconfig = {'dpid': "%016x" % (i+1)}
 self.addSwitch('s%d' % (i+1), **sconfig)
 # Create host nodes (h1, h2, h3, h4)
 for i in range(4):
 self.addHost('h%d' % (i+1), **hconfig)
 # Add switch links according to the topology
 self.addLink('s1', 's2', **LBW_path)
 self.addLink('s2', 's4', **LBW_path)
 self.addLink('s1', 's3', **HBW_path)
 self.addLink('s3', 's4', **HBW_path)
 # Add host links
 self.addLink('h1', 's1', **host_link_config)
 self.addLink('h2', 's1', **host_link_config)
 self.addLink('h3', 's4', **host_link_config)
 self.addLink('h4', 's4', **host_link_config)
topos = { 'slicingtopo': (lambda: FVTopo()) }

After network topology, the next step is to create a configuration for FlowVisor,
which will be run in a new console terminal. Assuming that you have already
installed FlowVisor on a separate virtual machine, the following command line
creates this configuration:

$ sudo -u flowvisor fvconfig generate /etc/flowvisor/config.json

The fvadmin password can be left blank by just hitting the return (Enter) key
when prompted. To activate this configuration simply start FlowVisor:

$ sudo /etc/init.d/flowvisor start

Using the fvctl utility, enable the FlowVisor topology controller. The -f command
line parameter points to a password file. Since no password is set for FlowVisor, the
password file could point to /dev/null. In order to activate this change, FlowVisor
should be restarted:

$ fvctl -f /dev/null set-config --enable-topo-ctrl

$ sudo /etc/init.d/flowvisor restart

Chapter 6

[97]

All the OpenFlow switches in the Mininet should have connected to the FlowVisor,
when it is started. By getting the configuration of FlowVisor, ensure that it is
properly running:

$ fvctl -f /dev/null get-config

You will see the following FlowVisor configuration (in JSON format) similar to the
following screen output if it is running properly:

FlowVisor configuration in JSON format

Using the following command, list the existing slices and ensure that fvadmin
(the default slice) is the only one, which is shown in the output of the fvctl
command:

$ fvctl -f /dev/null list-slices

Issue the following command to print the existing flow spaces and ensure that
there are no existing flowspaces:

$ fvctl -f /dev/null list-flowspace

Getting a Network Slice

[98]

Listing the data paths will ensure that all the switches have connected to the
FlowVisor. You can check it by executing the following fvctl command.
Before executing the command, you might have to wait for a few seconds.
This will give enough time for the switches (s1, s2, s3, and s4) to connect
to FlowVisor:

$ fvctl -f /dev/null list-datapaths

In the next step, ensure that all the network links are active by running the
following command:

$ fvctl -f /dev/null list-links

The output will print out the DPIDs and source and destination ports, which are
connected to each other.

Now, we are ready to slice the network. In this experiment, we will create two physical
slices, which are named Upper and Lower slice, as shown in the following figure:

h2
10.0.0.2

s1
dpid: 1

s3
dpid: 3

s4
dpid: 4

h4
10.0.0.4

port: 2port: 4

port: 1 port: 2

port: 2 port: 4

Slice: Lower

10
Mb/s

10
Mb/s

h1
10.0.0.1

s1
dpid: 1

s2
dpid: 2

s4
dpid: 4

h3
10.0.0.3

port: 1port: 3

port: 1 port: 2

port: 1 port: 3

Slice: Upper

Upper and Lower slices of the experimental network

Each slice can be controlled by a separate controller, which will control all the packet
traffic in its own slice. The following command creates a slice named upper and
connects it to a controller listening on tcp:localhost:10001:

$ fvctl -f /dev/null add-slice upper tcp:localhost:10001 admin@upperslice

Chapter 6

[99]

Leave the slice password empty by pressing the return (Enter) key when prompted.
Similarly, you can create a slice named lower and connect it to a controller listening
on tcp:localhost:10002. Again, leave the Slice password empty by hitting the return
(Enter) key when prompted.

$ fvctl -f /dev/null add-slice lower tcp:localhost:10002 admin@lowerslice

Now, by executing the list-slices command, ensure that the slices were
successfully added:

$ fvctl -f /dev/null list-slices

Besides the default fvadmin slice, you should be able to see both the upper and
lower slices and all of them should be enabled. In the next step, you will create
flowspaces. Flowspaces associate packets of a particular type to specific slices.
When a packet matches more than one flowspace, FlowVisor assigns it to the
flowspace with the highest priority number. The description of flowspaces comprises
a series of comma separated field=value assignments. You can learn more about
the add-flowspace command by typing:

$ fvctl add-flowspace -h

Now, we create a flowspace named dpid1-port1 (with priority value 1) that maps
all the traffic on port 1 of switch S1 to the upper slice in the network topology.
This can be done by executing the following command:

$ fvctl -f /dev/null add-flowspace dpid1-port1 1 1 in_port=1 upper=7

Here, we gave the upper slice all permissions: DELEGATE, READ, and WRITE
(1 + 4 + 2 = 7). In a similar way, we create a flowspace named dpid1-port3 that
maps all the traffic on port 3 of switch S1 to the upper slice in the network:

$ fvctl -f /dev/null add-flowspace dpid1-port3 1 1 in_port=3 upper=7

By using the match value of any, we can create a flowspace for matching all
the traffic at a switch. So, we add switch S2 to the upper slice by running the
following command:

$ fvctl -f /dev/null add-flowspace dpid2 2 1 any upper=7

Now, we create two more flowspaces (dpid4-port1 and dpid4-port3) to add ports
1 and 3 of switch S4 to the upper slice:

$ fvctl -f /dev/null add-flowspace dpid4-port1 4 1 in_port=1 upper=7

$ fvctl -f /dev/null add-flowspace dpid4-port3 4 1 in_port=3 upper=7

Getting a Network Slice

[100]

Ensure that these flowspaces are correctly added by running the following command:

$ fvctl -f /dev/null list-flowspace

You should see all the flowspaces (5 in total) that you just created. Now, we create
flowspaces for the lower slice:

$ fvctl -f /dev/null add-flowspace dpid1-port2 1 1 in_port=2 lower=7

$ fvctl -f /dev/null add-flowspace dpid1-port4 1 1 in_port=4 lower=7

$ fvctl -f /dev/null add-flowspace dpid3 3 1 any lower=7

$ fvctl -f /dev/null add-flowspace dpid4-port2 4 1 in_port=2 lower=7

$ fvctl -f /dev/null add-flowspace dpid4-port4 4 1 in_port=4 lower=7

Again, ensure that the flowspaces are correctly added:

$ fvctl -f /dev/null list-flowspace

Now, you can launch two OpenFlow controllers on your local host, which are listening
on port 10001 and 10002 corresponding to upper and lower slices. You should also
write a small Net App that reactively installs routes based on the destination MAC
address. After a short delay, both controllers should connect to FlowVisor. Now,
you can verify that host h1 can ping h3 but not h2 and h4 (and vice versa).

Run the following command in the Mininet console:

mininet> h1 ping -c1 h3

mininet> h1 ping -c1 -W1 h2

mininet> h1 ping -c1 -W1 h4

Verify that h2 can ping h4 but not h1 and h3 (and vice versa). Run the following
command in the Mininet console:

mininet> h2 ping -c1 h4

mininet> h2 ping -c1 -W1 h1

mininet> h2 ping -c1 -W1 h3

This concludes a simple network slicing using switch ports. However, by defining
other slicing rules and developing other Net Apps, you can provide interesting and
innovative services for each slice. For example, you can differentiate traffics and treat
them accordingly across the upper and lower network slices. We leave them to you
as homework.

Chapter 6

[101]

Summary
In this chapter we introduced the concept of network virtualization and in
particular, the role and functionality of FlowVisor as a tool for network slicing in
OpenFlow-based networks. The FlowVisor API and related structures for flow
matching and slice actions were presented and a use-case experiment was explained
in this chapter. Now you are aware of the tools, which can be used to slice a network
and control each slice in an innovative way. In the next chapter, we will look at the
role of OpenFlow and SDN in general in cloud computing.

OpenFlow in Cloud
Computing

This chapter focuses on the role of OpenFlow in cloud computing and in particular
the installation and configuration of Neutron will be covered. One of the promises
of SDN (Software Defined Networking) and OpenFlow is the improvement that
they can introduce in data centers and a cloud computing infrastructure. Therefore,
it is worth covering the usage of OpenFlow (for instance, the Floodlight plugin
for OpenStack) in data centers and in particular OpenStack as one of the widely
used control and management software for cloud computing. A brief introduction
to OpenStack and its networking component (which is called Neutron as of this
writing) and its overall architecture will be discussed in this chapter. In particular,
the installation and the configuration of the Floodlight OpenFlow controller plugin
is explained in this chapter. Interested readers are recommended to consider this
chapter as a pointer to further details that can be found in the documentation of
OpenStack Networking.

OpenStack and Neutron
OpenStack is a cloud computing system software (sometimes referred to as cloud
computing OS), which delivers Infrastructure as a Service (IaaS). Released under
Apache License; OpenStack is a free open source software. OpenStack Foundation was
established in September 2012 as a non-profit corporate entity, which manages the
OpenStack project. It promotes OpenStack and its developer community. OpenStack
includes a set of building block projects that control pools of computing nodes
(that is processing nodes), storage, and networking resources in a data center.
OpenStack provides a dashboard that enables administrators to control and
provision the mentioned resources through a web-based (GUI) interface.

OpenFlow in Cloud Computing

[104]

OpenStack's modular architecture and its building blocks (and their code names)
are shown in the following figure:

OpenStack

Dashboard
“Horizon”

Identity
“Keystone”

Image
“Glance”

Compute
“Nova”

Storage Management

Object Storage
“Swift”

Block Storage
“Cinder”

Network
“Neutron”

Key components of OpenStack

OpenStack Compute (Nova), which is the main part of an IaaS system, is the cloud
computing fabric controller. Nova is written in Python and it utilizes many external
libraries such as SQLAlchemy (for database access), Kombu (for Advanced Message
Queuing Protocol communication), and Eventlet (for concurrent programming).
Nova is able to manage and automate pools of computer resources and can co-operate
with widely available virtualization technologies and High-performance computing
(HPC) deployments. It is designed to scale horizontally on commodity computers
with no proprietary hardware or software requirements and also to provide the ability
to integrate with third party technologies and legacy systems. Xen Server and KVM
are the typical choices for hypervisor technology, along with the Linux container
technology such as LXC and Hyper-V.

OpenStack utilizes two components for its storage management:

•	 Swift: It is used for object storage management. Swift is also known as
OpenStack Object Storage. It is a redundant and scalable storage system. Files
and objects are written to multiple disks across multiple servers in the data
center. The OpenStack software is responsible for ensuring data integrity
and replication across the cluster. By adding new servers, storage clusters
simply scale horizontally. If a server or hard drive fails, OpenStack replicates
its content to new locations in the cluster from other active nodes. Since
OpenStack uses software algorithms to ensure data distribution and data
replication across different devices, inexpensive commodity hard disks and
servers can be used for storage management.

Chapter 7

[105]

•	 Cinder: It provides persistent block level storage devices for use with the
OpenStack compute instances. Cinder is also known as OpenStack Block
Storage. The block storage system is responsible to manage the creation,
attachment, and detaching of the block devices to the servers. Block storage
is suitable for performance sensitive scenarios such as expandable file
systems, database storage, or for providing a server with access to a raw
block level storage device. Block storage volumes are fully integrated into
Nova (OpenStack compute) and OpenStack's Dashboard. This enables the
cloud users to easily manage their own storage requirements. Powerful
functionality for backing up data stored on block storage volumes is
provided by Snapshot management. Snapshots can be used to create a new
block storage volume or simply can be restored.

Horizon is the OpenStack dashboard. It provides a graphical user interface (GUI)
for users and administrators to provision, automate, and access to cloud-based
resources. Third party products and services, such as monitoring, billing, and
additional management tools can be integrated into the Horizon (OpenStack
dashboard). Using the native OpenStack API or the Amazon EC2 compatibility API,
developers can automate access or build customized tools to manage their resources.
OpenStack APIs are compatible with Amazon S3 and Amazon EC2. Therefore, client
applications, which are designed and developed for Amazon Web Services can be
used with OpenStack.

Keystone (OpenStack Identity component) provides a central directory of users,
which are mapped to their accessible OpenStack services. It functions as a common
authentication system across the cloud operating system. It can also be integrated
with existing backend directory services such as LDAP. Standard username and
password credentials, token-based systems, and Amazon Web Services logins are
the multiple authentication mechanisms, which are supported by Keystone.

Glance (OpenStack Image Service) provides discovery, registration, and delivery
services for server images and disks. Stored server images can be used as a template.
It can be also used to store and catalog an infinite number of backups. Glance can
store disk and server images in a variety of back-ends, including Swift. A standard
REST (Representational State Transfer) interface is provided by Glance for querying
information about disk images and enables clients to stream the disk images to
new servers.

OpenFlow in Cloud Computing

[106]

Neutron (formerly known as Quantum) is the networking component of OpenStack.
It manages networks and IP addresses. Effectively from the Folsom release, Neutron
is a supported and core part of the OpenStack platform. Like other components of
the cloud operating system, administrators and users can utilize Neutron to increase
the utilization of existing resources in a data center. Neutron provides Networking
as a Service (NaaS) between interface devices (for instance vNICs), which are
managed by other Openstack services. OpenStack Neutron provides networking
models for different user groups or applications. Standard models include VLANS
or flat networks for separation of network traffic among different servers. Neutron
also manages IP addresses, which can provide dedicated static IPs or DHCP-based
IP addressing. Floating IP addressing allows packets' traffic to be dynamically
rerouted to any of the computing nodes, which facilitates traffic redirection during
VM migration, maintenance, or failure handling. Extensible architecture of Neutron
paves the way for additional network services, such as firewalls, intrusion detection
systems (IDS), virtual private networks, and load balancing to be deployed and
managed. The networking component of OpenStack, provides the OpenStack's
users with an API to construct rich networking topologies and configure advanced
network policies to construct multitier web application topology. The modular
structure of Neutron facilitates the development of innovative plugins, which
introduce advanced network capabilities (such as L2-in-L3 tunneling to bypass
4096 VLAN limitation, end-to-end QoS guarantees, and utilization of monitoring
protocols such as NetFlow and OpenFlow plugins). Besides, developers can develop
advanced network services that integrate into the OpenStack tenant network using
plugins. For instance, data-center-interconnect-aaS, IDS-aaS, firewall-aaS, VPN-
aaS, and load-balancing-aaS are a few typical advanced services to mention. Using
Neutron, users can create their own networks, control traffic, and connect servers
and devices to one or more networks, while administrators can take advantage of
SDN technology (for instance OpenFlow) to provide high levels of multitenancy
and scalability.

OpenStack Networking Architecture
Neutron is able to utilize a set of backends called plugins that support a growing
set of networking technologies. These plugins may be distributed separately or as
part of the main Neutron release. OpenStack Networking (Neutron) is a virtual
network service that provides an efficient API to define the network connectivity
and addressing, that is used by devices from other OpenStack services (such as
OpenStack Compute). The OpenStack Networking API utilizes virtual network,
subnet, and port abstractions to describe networking resources. In the OpenStack
networking ecosystem:

Chapter 7

[107]

•	 Network is an isolated L2 segment similar to VLAN in the physical networking
•	 A block of IPv4 or IPv6 addresses and associated configuration states

is a subnet
•	 A connection point for attaching a single device, such as the NIC of a virtual

server, to a virtual network is defined as a port. Also, a port describes the
network configuration parameters (such as the MAC and IP addresses),
which are associated to that port

By creating and configuring networks and subnets, users can configure rich network
topologies; and then instructing other OpenStack services such as OpenStack Compute
to connect virtual interfaces to ports on these networks. Neutron particularly supports
each tenant having multiple private networks, and enables tenants to choose their own
IP addressing scheme. The OpenStack Networking service:

•	 Provides advanced cloud networking scenarios, such as constructing
multitiered web applications and enabling applications to be migrated
to the cloud without IP addresses' modifications

•	 Enables cloud administrators to offer flexible and customized
network offerings

•	 Provides API extensions that lets cloud administrators expose additional
API capabilities. These new capabilities are typically introduced as an
API extension, and gradually will become part of the core OpenStack
Networking API

The original OpenStack Compute network implements a very simple model of traffic
isolation through IP tables and Linux VLANs. OpenStack Networking introduces the
notion of a plugin, which is a backend implementation of the OpenStack Networking
API. A plugin can use different technologies to implement the logical API requests.
Some OpenStack Networking plugins might use basic Linux VLANs and IP tables,
while others might use more advanced technologies, such as L2-in-L3 tunneling or
OpenFlow, to provide similar capabilities.

The main module of the OpenStack Networking server is neutron-server, which is a
Python daemon that exposes the OpenStack Networking API. It passes user requests
to the configured OpenStack Networking plugin for extra processing.

OpenFlow in Cloud Computing

[108]

The plugin typically needs a database for persistent storage. If your deployment
uses a controller host to run centralized OpenStack Compute components, you can
deploy the OpenStack Networking server on that same host. However, OpenStack
Networking is completely standalone and can be deployed on its own server. Based
on deployment, OpenStack Networking also includes additional agents that might
be required:

•	 The Plugin agent (neutron-*-agent), which executes on each hypervisor to
configure a local switch. Since some plugins do not actually require an agent,
the agent to be run will depend on the selected plugin

•	 The DHCP agent (neutron-dhcp-agent) provides DHCP services
to tenant networks

•	 The L3 agent (neutron-l3-agent) provides L3 / NAT forwarding to
facilitate external network access for VMs on tenant networks

These agents interact with the core Neutron process through remote procedure
call (RPC) or by utilizing the standard OpenStack Networking API. OpenStack
Networking relies on the Keystone for the authentication and authorization of all
API requests. Nova interacts with OpenStack Networking through standard API
calls. During the VM creation process, the Nova communicates with the OpenStack
Networking API to plug each virtual network interface card on the VM into a
particular network. Horizon integrates with the OpenStack Networking API, and
enables tenant users and administrators to create and manage network services
through the GUI of the OpenStack dashboard.

There are four distinct physical data center networks in a standard OpenStack
networking deployment, as depicted in the following figure (data network connects
virtual machines inside the cloud setup and is not shown in the following figure):

Chapter 7

[109]

neutron-l3-agent

neutron-dhcp-agent

Network Node

neutron-*-plugin-agent

nova-compute

Compute Node

Cloud Controller
Node

mysql

rabbit

nova-api

nova-scheduler

keystone

neutron-server

Clinder

Glance

neutron-*-plugin-agent

Internet

Management Network

External
Network

API
Network

Network connectivity for physical hosts

•	 Management network: It is used for internal communication between
OpenStack components. IP addresses assignments on this network should
be only reachable within the data center network

•	 Data network: It is used for VM data communication within the cloud setup.
Depending on the used networking plugin the IP addressing requirements of
this network varies

•	 External network: It is used to provide the Internet access for VMs in some
deployments. IP addresses on this network should be visible and reachable
by any host on the Internet.

•	 API network: It exposes all OpenStack APIs, including the OpenStack
Networking API, to tenants. IP addresses on this network should be
reachable by anyone on the Internet

The complete installation and configuration instructions of OpenStack
Neutron can be found in the OpenStack networking administration
guide. More information can be found here:
http://wiki.openstack.org/wiki/Neutron.

OpenFlow in Cloud Computing

[110]

Neutron plugins
Providing rich cloud networking by enhancing traditional networking solutions is
quite challenging. Traditional networking is not scalable to cloud proportions by its
design nor to cope with automatic configuration. OpenStack Networking introduces
the concept of a plugin, which is a backend implementation of the OpenStack
Networking API. In order to implement the logical API requests, a plugin can utilize
a variety of technologies. Some plugins might use the Linux IP tables and basic
VLANs, while other implementations might use more advanced technologies, such
as L2-in-L3 tunneling or OpenFlow. Plugins can have different features for hardware
requirements, properties, performance, scale, or operator tools. OpenStack supports
a wide spectrum of plugins. Therefore, the cloud administrator is able to consider
different options and decide which networking technology fits a particular use case
scenario. Among different plugins for Neutron, in this section we will consider the
Floodlight controller plugin for OpenStack Neutron.

Utilizing a Neutron plugin, Floodlight can be run as the network backend for
OpenStack. Neutron which exposes a NaaS model via a REST API, which is
implemented by Floodlight. This solution includes two main components:
the Neutron RestProxy plugin that connects Floodlight to Neutron and a
VirtualNetworkFilter module in Floodlight that implements the Neutron API. The
VirtualNetworkFilter module implements MAC-based layer 2 network isolation in
OpenFlow networks and exposes it through a REST API. This module is included
in Floodlight by default and does not depend on Neutron or OpenStack to be active
and running. The VirtualNetworkFilter can be activated through a configuration file
change described later in the chapter. The RestProxy plugin was designed to run as
part of OpenStack's Neutron service. Floodlight with the Big Switch Neutron plugin
supports OpenStack Grizzly release.

The Floodlight OpenStack support is enabled by:
The Big Switch Neutron Plugin at the OpenStack Neutron main repo:
http://github.com/openstack/neutron.
The OpenStack devstack repo stable/grizzly branch: http://github.
com/openstack-dev/devstack/tree/stable/grizzly.

The following instructions are for setting up Floodlight and OpenStack (Grizzly) on
a Ubuntu VM using devstack scripts developed by Big Switch. A virtual machine
with Ubuntu Server 12.04.1 or with a later version is required as an installation
prerequisite. The outcome of this procedure is a single node OpenStack installation
with Floodlight as its Neutron backend. Tenants, virtual networks, and virtual
instances can be created by OpenStack Horizon GUI (dashboard).

Chapter 7

[111]

You will need to execute a Floodlight controller for the OpenStack Neutron
networking support to properly function. The floodlight controller can be running on
a separate floodlight VM or you can obtain and download the Floodlight source as a
compressed ZIP file, unzip it, compile, and run it with the following simple steps on
your Ubuntu VM. Make sure you have Internet connectivity before proceeding:

$ sudo apt-get update

$ sudo apt-get install zip default-jdk ant

$ wget --no-check-certificate https://github.com/floodlight/floodlight/
archive/master.zip

$ unzip master.zip

$ cd floodlight-master; ant

$ java -jar target/floodlight.jar -cf
src/main/resources/neutron.properties

To confirm the VirtualNetworkFilter is successfully activated, enter the following
commands on your Ubuntu VM:

$ curl 127.0.0.1:8080/networkService/v1.1

{"status":"ok"}

Once Floodlight is confirmed running, we are ready to install OpenStack using the
install-devstack script. The following are the steps:

1.	 It configures the OVS switch on the VM to listen to the Floodlight controller.
2.	 Then, it installs OpenStack and the Big Switch REST proxy plugin on the VM.
3.	 If you want the OpenStack Grizzly release, use the following commands:

$ wget https://github.com/openstack-
dev/devstack/archive/stable/grizzly.zip

$ unzip grizzly.zip

$ cd devstack-stable-grizzly

4.	 If you want the OpenStack Folsom release, use the following commands:
$ wget
https://github.com/bigswitch/devstack/archive/floodlight/folsom.
zip

$ unzip folsom.zip

$ cd devstack-floodlight-folsom

OpenFlow in Cloud Computing

[112]

5.	 Use your favorite editor to create a file named localrc and fill in the following
details. Remember to replace <password> to your chosen password and
update BS_FL_CONTROLLERS_PORT=<floodlight IP address> with the
value 8080. If you have run Floodlight in the same VM, then use 127.0.0.1
for <floodlight IP address>; otherwise, use the IP address of the VM or
the host where Floodlight is running on it.
disable_service n-net

enable_service q-svc

enable_service q-dhcp

enable_service neutron

enable_service bigswitch_floodlight

Q_PLUGIN=bigswitch_floodlight

Q_USE_NAMESPACE=False

NOVA_USE_NEUTRON_API=v2

SCHEDULER=nova.scheduler.simple.SimpleScheduler

MYSQL_PASSWORD=<password>

RABBIT_PASSWORD=<password>

ADMIN_PASSWORD=<password>

SERVICE_PASSWORD=<password>

SERVICE_TOKEN=tokentoken

DEST=/opt/stack

SCREEN_LOGDIR=$DEST/logs/screen

SYSLOG=True

#IP:Port for the BSN controller

#if more than one, separate with commas

BS_FL_CONTROLLERS_PORT=<ip_address:port>

BS_FL_CONTROLLER_TIMEOUT=10

6.	 Then, enter the following command:
$./stack.sh

Note that OpenStack installation is a long process that cannot be interrupted. Any
interruption or loss of network connectivity results in unknown states that cannot be
resumed. It is recommended that you take a snapshot using VirtualBox before you
begin the installation, such that you can easily power down and restore the original
snapshot if indeed the process is interrupted. The script install-devstack.
sh requires uninterrupted IP connectivity to run. If the installation completes
successfully, it will show as the following screenshot:

Chapter 7

[113]

You can verify the installation of OpenStack and Floodlight
using the instructions in the following link: http://docs.
projectfloodlight.org/display/floodlightcontroller/
Verify+OpenStack+and+Floodlight+Installation.

Summary
Neutron is an OpenStack project to provide networking as a service (NaaS)
among interface devices (known as virtual NICs) managed by other Openstack
services (Nova). Starting in the Folsom release of OpenStack, Neutron is a core
and supported part of the OpenStack framework. In this chapter, the key building
blocks of OpenStack including the Neutron networking component and the backend
plugins (specifically the Floodlight plugin) were introduced. The Neutron API,
includes support for L2 networking and IP Address Management (IPAM). The API
Extensibility platform, including extensions for provider network, which maps
Neutron L2 networks to a specific VLAN in the physical data center, network L3
routers support a simple L3 router construct to route between L2 networks. It also
provides a gateway to external networks with support for floating IP addresses.
In the final chapter of this book, we provide a selection of key Open Source projects
around SDN and OpenFlow.

Open Source Resources
SDN and OpenFlow are among the hot topics in networking research and
development domain both in industry and academia. There are plenty of active open
source projects around SDN and OpenFlow form OpenFlow software-based switches
to OpenFlow controllers, orchestration tools, network virtualization tools, simulation
and testing tools, and so on. The main idea here is to give a brief and condensed
summary of active open source projects around SDN and OpenFlow.
We will cover the following open source projects:

•	 Switches: Open vSwitch, Pantou, Indigo, LINC, XORPlus, OF13SoftSwitch
•	 Controllers: Beacon, Floodlight, Maestro, Trema, FlowER, Ryu
•	 Miscellaneous: FlowVisor, Avior, RouteFlow, OFlops and Cbench, OSCARS,

Twister, FortNOX
This chapter gives pointers to the important projects that network engineers can
utilize in their operational environment.

Switches
In this section, we will cover the open source projects with focus on OpenFlow
soft switching.

Open Source Resources

[116]

Open vSwitch
Hypervisors (for example, Xen, VirtualBox, VMware player) need the ability to
bridge traffic between virtual machines (VMs) and to/from the outside world.
Linux bridge as a built-in L2 switch, is and fast a reliable means for that. But
Open vSwitch is targeted at multi-server virtualization deployments, for which
Linux bridging is not a suitable solution for interconnecting VMs. Multi-server
virtualization environments are often characterized by highly dynamic end-points,
the maintenance of logical abstractions, and (sometimes) integration with, or
offloading to, special purpose switching hardware. Mobility of state, response to
network dynamics, maintenance of logical tags, and hardware integration are
the key features of Open vSwitch to meet these requirements.

All associated network states with a VM should be easily identified and migrated
(if required) between different physical hosts. This may include a traditional soft
state (for example an entry in an L2 forwarding table), an L3 forwarding state,
ACLs, QoS policy, or monitoring configuration (for instance NetFlow, sFlow),
and so on. Open vSwitch has support for both configuring and migrating both
slow (configuration) and fast network states between instances.

Virtual environments are often characterized by high rates of change (for example,
coming and going of VMs and changes to the logical network environments).
Open vSwitch supports a number of features that allow a network control system
to respond and adapt as the environment changes. In addition to simple accounting
and visibility support such as NetFlow, and sFlow, Open vSwitch supports a
network state database (OVSDB) that supports remote triggers. Therefore, a piece
of orchestration software can monitor various aspects of the network and respond
if/when they change. This can be used to respond to, and track the VM migrations.
Open vSwitch also supports OpenFlow as a method of exporting remote access to
control traffic.

Distributed virtual switches (for example, VMware, vDS, and Cisco's Nexus
1000V) often maintain a logical context within the network through appending or
manipulating tags in network packets. This can be used to uniquely identify a VM,
or to hold some other context that is only relevant in the logical domain. Much of
the problem of building a distributed virtual switch is to efficiently and correctly
manage these tags. Open vSwitch includes multiple mechanisms for specifying
and maintaining tagging rules, all of which are accessible to a remote process
for orchestration.

The forwarding path in Open vSwitch (that is the in-kernel data path) is designed
to offload the packet processing to the hardware chipsets, whether housed in a
classic hardware switch chassis or in an end-host NIC. This enables the Open
vSwitch to be able to both control a pure software implementation or a hardware

Chapter 8

[117]

switch. The advantage of hardware integration is not only performance within
virtualized environments. If physical switches also expose the Open vSwitch control
abstractions, both bare-metal and virtualized hosting environments can be managed
using the same mechanism for automated network control.

Open vSwitch is a multilayer virtual switch licensed under the Apache license. It is
designed to enable massive network automation through programmatic extension,
while still supporting standard management interfaces and protocols (for example,
NetFlow, sFlow, SPAN, RSPAN, CLI, LACP, 802.1ag). In addition, it is designed to
support distribution across multiple physical servers similar to VMware's vNetwork
distributed vSwitch or Cisco's Nexus 1000V. (See the following figure):

Automated control:

Security:

Monitoring:

Qos:

OpenFlow
OVSDB

VLAN isolation
Traffic filtering

NetFlow
sFlow
SPAN
RSPAN

Traffic queuing
Traffic shaping

Open vSwitch

Physical host

VM VM VMVM

Network Interface Card(NIC)

Open vSwitch: Production quality, Multilayer, Open Virtual Switch.

Open vSwitch can operate as both, a soft switch running within the hypervisor, and
as the control stack for switching silicon. It has been ported to multiple virtualization
platforms and switching chipsets. It is the default switch in XenServer 6.0, the Xen
Cloud Platform and also supports Xen, KVM, Proxmox VE, and VirtualBox. It has
also been integrated into many virtual management systems including OpenStack,
openQRM, OpenNebula and oVirt. The kernel data path is distributed with Linux,
and packages are available for Ubuntu, Debian, and Fedora. The Open vSwitch
release in development also supports FreeBSD. The bulk of the code is written in
platform-independent C and is easily ported to other environments. As of Linux 3.3,
Open vSwitch is included as a part of the kernel and packaging for the userspace
utilities are available on most popular distributions.

Open Source Resources

[118]

You can find more information about Open vSwitch and download it
here: http://www.openvswitch.org.

Pantou
Pantou turns a commercial wireless router/access point to an OpenFlow-enabled
switch. OpenFlow is implemented as an application on top of OpenWrt. OpenWrt is
an operating system primarily used on embedded devices to route network traffic.
The main components are the Linux kernel, uClibc, and BusyBox. All components
have been optimized for size, to be small enough to fit the limited storage and
memory available in home routers. Pantou is based on the BackFire OpenWrt
release (Linux 2.6.32). The OpenFlow module is based on the Stanford reference
implementation (userspace). To convert your router/access point into an OpenFlow
switch, you need to get an appropriate image for your device chipset (currently
Broadcom and Atheros), load this image to your device and verify that everything
works together. You can also build your own image rather than using one of the
provided ones from its source code. It is strongly recommended that you build and
load a vanilla OpenWrt tree before adding any OpenFlow-related functionality.
The current release of Pantou is based on the BackFire OpenWrt release.

More information about OpenFlow 1.0 for OpenWRT can be found in
the following link: http://www.openflow.org/wk/index.php/
OpenFlow_1.0_for_OpenWRT.
In addition, an OpenFlow 1.3 implementation for OpenWRT can be
found in the following link:
http://github.com/CPqD/openflow-openwrt.

Indigo
Indigo is an open source OpenFlow implementation that runs on physical switches
and uses the hardware features of application specific integrated circuits (ASICs)
of Ethernet switches to run OpenFlow at line rates. It is based on the OpenFlow
Reference Implementation from Stanford and currently implements all required
features of the OpenFlow 1.0 standard. First Generation implementation of Indio
switch is no longer supported. Indigo2 is the basis of Switch Light by Big Switch
Networks and the Indigo Virtual Switch. Indigo2 has two components, Indigo2
agent and LoxiGen. The Indigo2 agent represents the core libraries and includes a
hardware abstraction layer (HAL) to make it easy to integrate with the forwarding
and port management interfaces of physical or virtual switches, and a configuration
abstraction layer to support running OpenFlow in a hybrid mode on a physical
switch. LoxiGen is a compiler that generates OpenFlow marshalling/un-marshalling

Chapter 8

[119]

libraries in multiple languages. Currently it supports C (called loci), but Java and
Python programming/scripting languages are under development. Indigo virtual
switch (IVS) is a lightweight, high-performance vSwitch built from the ground
up to support the OpenFlow protocol. It is designed to enable high-scale network
virtualization applications and supports distribution across multiple physical servers
using an OpenFlow enabled controller, similar to VMware's vNetwork, Cisco's
Nexus, or Open vSwitch.

More information about the Indigo switch can be found in this URL:
http://www.projectfloodlight.org/indigo/

LINC
LINC is an open source project led by FlowForwarding (www.flowforwarding.org)
effort and is an Apache 2 license implementation based on OpenFlow 1.2, 1.3.1 and
OF-Config 1.1. FlowForwarding is a community promoting free, open source, and
commercially friendly Apache 2 license implementation based on OpenFlow and Open
Networking Foundation (ONF) specifications. LINC is an ERLANG based switch
for Linux.

An Alpha version of the source code is available at:
https://github.com/FlowForwarding.

XORPlus
With the fast improvement of switching ASICs, the off-the-shelf switch chips
(for example Broadcom) have surpassed the performance and density of proprietary
designed chips from traditional switch system vendors (for example, Cisco and
Brocade). XORPlus fills the gap of an open source switching software to drive high
performance ASICs. Pica8 (www.pica8.org) XORPlus is a unique open source
software, which runs on a data center grade of switch platforms to provide not only
high quality of protocol implementation but also a high performance of switching/
routing speed. It is a switching software supported by open community. The
software supports the most popular L2/L3 protocols the network users would need.
XORPlus focuses on solving performance, scalability, and stability issues for data
center networks. Among the L2 features of XORPlus, we can mention STP/RSTP/
MSTP, LCAP, QoS, 802.1q VLAN, LLDP, and ACL protocols. OSPF/ECMP, RIP,
IGMP, IPv6, and PIM-SM are L3 features of XORPlus.

Open Source Resources

[120]

OpenFlow is supported through Open vSwitch (OVS) 1.1 release, which is compliant
with OpenFlow 1.0 specification. Most importantly, XORplus enables the community
to innovate. Users can develop leading-edge protocols and data traffic management
without the limitation of traditional embedded switches. Pica8 XORPlus is
independent of the underlying switch chips. It can run on different platforms with
high extensibility. The software architecture is designed to allow the protocol stack
running on different platforms from the driver and the switching hardware. This
allows much more flexible usage models than traditional switches. With the open
source software and open platform, users of high performance switches can finally
break the lock-in of high-margin proprietary switches.

Pica8 XORPlus URL:
http://sourceforge.net/projects/xorplus.

OF13SoftSwitch
OF13SoftSwitch is an OpenFlow 1.3 compatible user-space software switch
implementation based on the Ericsson TrafficLab 1.1 SoftSwitch implementation
(http://github.com/TrafficLab/of11softswitch) with required changes in
the forwarding plane to support OpenFlow 1.3. The root code of this project is the
reference OpenFlow 1.0 implementation by Stanford University. The following
building blocks are included in the OF13SoftSwitch packaging:

•	 The OpenFlow 1.3 switch implementation: ofdatapath
•	 Secure channel to connect the switch to the OpenFlow controller:

ofprotocol

•	 A software library for converting from/to OpenFlow 1.3 wire formant: oflib
•	 A command line utility program (that is dpctl) to configure the

OF13SoftSwitch from console: dpctl

This project is supported by the Ericsson Innovation Center in Brazil and maintained
by CPqD in technical collaboration with Ericsson Research. Instructions for installing
and downloading the software switch, along with tutorials can be found in the
project page in Github. (See the following link). You can try the pre-configured
version of OF13SoftSwitch, which includes the OpenFlow 1.3 Software Switch, a
compatible version of NOX controller, the plugin to the Wireshark dissector and
OpenFlow test suite (OF-test).

Chapter 8

[121]

For more information visit the OpenFlow 1.3 softswitch project, this is
located at: http://cpqd.github.io/ofsoftswitch13/

Controllers
In Chapter 4, Setting Up the Environment, we covered POX, and OpenDaylight
OpenFlow controllers. In this section we provide a list of other open source
OpenFlow controller alternatives.

Beacon
Beacon is a fast, cross-platform, modular, Java-based controller that supports both
event-based and threaded operation. Beacon has been in development since early
2010, and has been used in several research projects, networking classes, and trial
deployments. It is written in Java and runs on many platforms, from high end
multi-core Linux servers to Android phones. Beacon is licensed under a combination
of the GPL v2 license and the Stanford University FOSS License Exception v1.0. Code
bundles in Beacon can be started/stopped/refreshed/installed at runtime, without
interrupting other non-dependent bundles. For example, you can replace your
running Learning Switch Net App without disconnecting switches.

You can find more information about this controller here:
https://openflow.stanford.edu/display/Beacon/Home

Floodlight
The Floodlight Open SDN Controller is an enterprise-class, Apache-licensed,
Java-based OpenFlow Controller. It is supported by a community of developers
including a number of engineers from Big Switch Networks. Floodlight is written in
Java and thus runs within a JVM. The source code repository is available on Github.
The easiest way to get started with Floodlight is to download the Floodlight VM
appliance. In addition of being an OpenFlow controller, Floodlight is also a collection
of applications built on top of the Floodlight Controller. The controller realizes a
set of common functionalities to control and inquire an OpenFlow network, while
applications on top of the Floodlight controller realizes different features to solve
different user requirements over the network. The architecture of Floodlight is
shown in the following figure.

Open Source Resources

[122]

The relationship among the Floodlight Controller, the applications built as Java
modules compiled with Floodlight, and the network applications built over the
Floodlight REST API are shown in this figure

*Intefaces defined only & not implemented: FlowCache, NoSql

REST Applications
Circuit
Pusher
(python)

OpenStack
Quantum Plugin

(python)

Applications in any language leveraging services via REST
API exposed by controller modules and module applications

REST API

Module Applications

Applications with
higher bandwidth
communication
with controller

such as Packetln's

ForwardingPortDown
Reconciliation

Hub Learning
Switch

R

Static
Flow
Entry

Pusher

VNF R

Firewall R

R
Module
Manager

RR

R
Device

Manager

Thread
Pool

Packet
Streamer

Jython
Sever

Web
Ul

RR
Unit
Tests

Topology
Manager/
Routing

R R
Link

Discovery
Flow

Cache*

OpenFlow Services

Controller
Memory

R
Switches

R
PerfMon

R
Trace

R
Counter
Store

R

R

NoSql*

Memory
Storage

Core services of common interest to SDN applications

Floodlight Controller

Ja
va

 A
P

I

Architecture of Floodlight controller and Net Apps

When you start Floodlight controller, a set of Java module applications, which are
loaded in the Floodlight properties file (for example, learning switch, hub, firewall,
and static flow entry pusher) start running too. The REST APIs exposed by all
running modules are available via the specified REST port (8080 by default). Other
Net Apps (for example, OpenStack quantum plug-in, or circuit pusher) can utilize
this REST API to retrieve information and invoke services by sending http REST
commands to the controller REST port.

You can find more information about Floodlight in the following URL:
http://www.projectfloodlight.org/floodlight/

Chapter 8

[123]

Maestro
Maestro is a network operating system for orchestrating network control
applications. Maestro provides interfaces for implementing modular network
control applications to access and modify the state of the network, and coordinate
their interactions via multiple protocols including OpenFlow. Although it can be
considered as an OpenFlow controller, Maestro is not limited to OpenFlow networks.
The programming framework of Maestro provides interfaces for:

•	 Introducing new customized control functions by adding modularized
control components.

•	 Maintaining the network state on behalf of the control components.
•	 Composing control components by specifying the execution sequencing and

the shared network state of the components.

Maestro is developed in Java (both the platform and the components), which makes
it highly portable to various operating systems and architectures. It also takes full
advantage of multi-core processors using multi-threading techniques. Maestro is
licensed under the GNU Lesser General Public License version 2.1.

For more details about downloading, using, and programming Maestro,
please visit: http://code.google.com/p/maestro-platform/

Trema
Trema is an OpenFlow controller framework that includes everything needed to
create OpenFlow controllers in Ruby and C. Trema source package includes basic
libraries and functional modules that work as an interface to OpenFlow switches.
Several sample applications developed on top of Trema are also provided, so you
can run them as a sample of the OpenFlow controllers. Additionally, a simple but
powerful framework that emulates an OpenFlow-based network and end-hosts is
provided for testing your own controllers. A Wireshark plug-in to diagnose internal
data-flows among functional modules is provided as a debugging tool. Currently,
Trema supports GNU/Linux only and it has been tested on the following platforms:

•	 Ubuntu 13.04, 12.10, 12.04, 11.10, and 10.04 (i386/amd64, Desktop Edition)
•	 Debian GNU/Linux 7.0 and 6.0 (i386/amd64)
•	 Fedora 16 (i386/x86_64)
•	 Ruby 1.8.7
•	 RubyGems 1.3.6 or higher

Open Source Resources

[124]

It may also run on other GNU/Linux distributions but is not tested and not
supported as of this writing.

You can find more information about Trema here: github.com/trema.

FlowER
FlowER is an open-source Erlang based OpenFlow controller. Its purpose is to provide
a simplified platform for writing network control software in Erlang. It is currently
under development but Travelping (www.travelping.com), creator of FlowER, is
already using it in its commercial products. FlowER is built for the deployment model
that packages each Erlang application either as an RPM or DEB package.

You can find more information about FlowER here:
http://github.com/travelping/flower

Ryu
Ryu is a component-based SDN framework that integrates with OpenStack and
supports OpenFlow. It provides a logically centralized controller and a well-defined
API that make it easy for operators to create new network management and control
applications. Ryu supports various protocols for managing network devices, such
as OpenFlow (1.0, 1.2, 1.3 and Nicira extensions), Netconf, OF-config, and so on. The
goal of Ryu is to develop an operating system for SDN that has high quality enough
for use in a large production environment. All of the code is freely available under
the Apache 2.0 license.

Utilizing Ryu, operators can create tens of thousands of isolated virtual networks
without using VLAN. You can create and manage virtual networks, which will be
propagated to OpenStack and Ryu plug-in. Ryu, in turn, configures Open vSwitches
properly. The pre-configured Ryu VM image file enables the operators to easily set
up a multi-node OpenStack environment. Ryu is implemented in Python and its
development is truly open.

You can find more information about Ryu here:
http://osrg.github.io/ryu/.

Chapter 8

[125]

Miscellaneous
In addition to the soft switches and controllers, there are many other open source
projects around OpenFlow and SDN. In this section we give pointers to some of the
important open source projects.

FlowVisor
A software-defined network can have some level of logical decentralization, with
multiple logical controllers. An interesting type of proxy controller, called FlowVisor,
can be utilized to add a level of network virtualization to OpenFlow networks and
allow multiple controllers to simultaneously control overlapping sets of physical
switches. Initially developed to allow experimental research to be conducted on
deployed networks alongside production traffic. It also facilitates and demonstrates
the ease of deploying new services in SDN environments. FlowVisor is a special
purpose OpenFlow controller that acts as a transparent proxy between OpenFlow
switches and multiple OpenFlow controllers as depicted in the following figure:

IP-Peering
and others

ONOS

Mininet

Forwarding

AppsApps Apps Apps

FlowVisorNetwork Hypervisor

Network OSNetwork OS

Te
st

in
g

FlowVisor as a network slicer.

Open Source Resources

[126]

FlowVisor creates rich slices of network resources and delegates control of each slice
to a different controller and also promoting isolation between slices. FlowVisor,
originally developed at Stanford University, has been widely used in experimental
Research & Education networks to support slicing where multiple experimenters get
their own isolated slice of the infrastructure and control it using their own network
OS and a set of control and management applications. FlowVisor enables you to
conduct network research in real production environments and using real network
traffic. As an open source proxy controller, you can customize the code to adapt to
your needs, with a configuration and monitoring interface in JSON for users, and a
Java programming language for developers, everyone has the ability to customize
by opt-in to different services. You can freely and quickly experiment with SDN,
with all the foundational SDN functions that enable you to learn about network
virtualization and test new methods for deploying services rapidly. Since it is based
on open standards that can run on a multi-vendor infrastructure, it supports multiple
vendors (for example, NEC, HP, Pronto, OVS, and so on), as well as multiple guest
network OSes (that is OpenFlow controllers).

We introduced FlowVisor in Chapter 6, How to get a Network Slice,
as part of our discussion about network virtualization; you can
find more information about FlowVisor and download it from
here: http://onlab.us/flowvisor.html.

Avior
Avior is an application built outside of Floodlight that gives network administrators
a graphical user interface to support their needs. Avior eliminates dependency on
using python scripts or viewing the REST API in order to monitor or manipulate
the network. Avior provides an overview of the controller, switch, device, and it
includes a flow manager. The controller overview provides information about the
controller including the hostname, the JVM memory bloat, whether the controller is
providing JSON data, and currently loaded modules. The switch overview provides
information about ports and their associated traffic counters and flow table entries.
Both dynamic and static flows are displayed with the priority, match, action, packets,
bytes, duration, and timeout details. The device overview displays information about
the MAC address, the IP address, the attached switch DPID, the attached switch
port, and the time it was last seen in the network. The flow manager provides an
overview and detailed information of the static flows for each switch. Here you can
also manage (add or delete) flow entries. In summary Avior supports a number of
useful features as follows:

•	 Static flow entry pusher interface: Add, modify, and delete flows easily
•	 Useful error checking and flow verification

Chapter 8

[127]

•	 Detailed controller, switch, device, port, and flow statistics that update
in real time

•	 Easy to use Logical patch panel

Avior is developed for the Marist OpenFlow Research project
(openflow.marist.edu). You can download it and find more
information about Avior here:
http://github.com/Sovietaced/Avior.

RouteFlow
RouteFlow is an open source project to provide virtualized IP routing over
OpenFlow capable hardware. It is composed by an OpenFlow controller application,
an independent server, and a virtual network environment that reproduces the
connectivity of a physical infrastructure and runs IP routing engines. The routing
engines generate the forwarding information base (FIB) into the Linux IP tables,
according to the routing protocols configured (for example, OSPF, BGP). RouteFlow
combines the flexibility of open-source Linux-based routing stacks (for example
Quagga, XORP) with the line-rate performance of OpenFlow devices. RouteFlow
allows for a migration path to the SDN via a controller-centric hybrid IP networking
in addition to deployable innovation around IP routing and the different flavors of
network virtualization. The main components of the RouteFlow solution are:

•	 RouteFlow Client (RF-Client)
•	 RouteFlow Server
•	 RouteFlow Proxy (RF-Proxy)

RF-Proxy which was formerly known as the RF-Controller (RF-C) application (see the
following figure). The main goal of RouteFlow is to develop an open source framework
for virtual IP routing solutions over a commodity hardware, which implements the
OpenFlow API. RouteFlow aims at a commodity routing architecture that combines
the line-rate performance of commercial hardware with the flexibility of open source
routing stacks (remotely) running on general purpose computers.

Open Source Resources

[128]

The migration path from legacy IP deployments to purely SDN/OpenFlow networks,
open source framework to support the different flavors of network virtualization (for
example, logical routers, router aggregation/multiplexing), IP Routing-as-a-Service
models of networking and simplified intra and inter-domain routing interoperable
with legacy networking devices, are key outcomes of design space of RouteFlow
routing solutions.

Open vSwitch

RouteFlow Protocol

Topo.
Disc.

Flow
Stats

App.
n

Control
Coordination

Data paths
Driversoftware

hardware

Agent

OpenFlow

DB

RouteFlow
Proxy Controllers

RouteFlow
Server

RF-Services

Route
Engine

Route
Table

ARP
Table

user space

NIC NIC NIC
1 2 n

kernel space

...

Virtual
Routers

RouteFlow
Client

GUI

Network Controller

HW Table
PORTs

1 2 ... n

...

Building blocks of RouteFlow in an architectural view

You can find more information about RouteFlow here:
http://sites.google.com/site/routeflow/home.

OFlops and Cbench
OFlops is a standalone controller that benchmarks various aspects of an OpenFlow
switch. OFlops implements a modular framework for adding and running
implementation-agnostic tests to quantify a switch's performance. OFlops sets up a
single control channel with the switch and uses multiple network ports to generate
traffic on the data plane (OpenFlow switch). Besides, OFlops supports an SNMP
protocol in order to read various MIB counters such as CPU utilization, packet
counters, and so on. OFlops has two building blocks:

Chapter 8

[129]

•	 The executable program, which implements the core functionality
of the platform

•	 A set of dynamically loaded libraries that implement the required
functionality for a specific performance evaluation

These components communicate with each other using a rich set of event-driven
APIs. Each dynamic test can implement a subset of the provided event handler
and adjust the behavior of OFlops. OFlops performs multi-level high precision
measurements in order to benchmark the performance of the switch. It utilizes
multi-threading parallelism. Cbench is a program for testing OpenFlow controllers
by generating packet-in events for new flows. Cbench emulates a bunch of switches,
which connect to a controller, sends packet-in messages, and waits for flow-mods to
get pushed down.

You can find more information about OFlops and Cbench here:
http://www.openflow.org/wk/index.php/Oflops.

OSCARS
Energy Services Network (ESnet) On-Demand Secure Circuits and Advance
Reservation System (OSCARS) provides multi-domain, high-bandwidth virtual
circuits that guarantee end-to-end network data transfer performance. OSCARS
software works as both a framework for research innovation and as a reliable
production level service for ESnet users. While ESnet offers a menu of service
components to novice users, ESnet is exploring an integrated services framework to
assist experienced users to configure highly modular atomic services as desired, and
for network researchers to customize according to experimental parameters.

You can find more information here:
http://www.es.net/services/virtual-circuits-oscars.

Twister
Luxoft Twister is a test automation framework designed to manage and drive test
cases written in shell scripting languages. Twister supports TCL, Python, and Perl.
Twister offers an intuitive, web-based user interface for configuration, control, and
reporting with remote access availability. This makes it easy to build the testing
suite, execute it, and accurately monitor the result logs.

Open Source Resources

[130]

For more information see: http://github.com/
Luxoft/Twister.

FortNOX
FortNOX is an extension to the open-source NOX OpenFlow controller. FortNOX
automatically checks whether the new flow rules violate security policies. FortNOX
can detect rule contradictions, even in the presence of dynamic flow tunneling using
set action rules.

For more information please refer to:
www.openflowsec.org/OpenFlow_Security/Home.html.

Nettle
Nettle allows networks of OpenFlow switches to be controlled using a high-level,
declarative and expressive language. It is implemented on a Haskell library that
supports the OpenFlow protocol and provides an OpenFlow server.

You can find more information about Nettle here:
haskell.cs.yale.edu/nettle.

Frenetic
Frenetic is a domain-specific language for programming OpenFlow networks,
embedded in Python.

For more information go to:
www.frenetic-lang.org.

Chapter 8

[131]

OESS
NDDI OESS is an application to configure and control OpenFlow Enabled switches
through a very simple and user-friendly User Interface. OESS provides sub-second
circuit provisioning, automatic failover, per-interface permissions, and automatic
per-VLAN statistics.

For more information refer to: http://code.google.com/p/nddi/.

Summary
Software-defined networking and OpenFlow are among the very hot topics both in
academia and industry. There are a lot of commercial and open source developments
around OpenFlow and SDN in general. In this chapter, we provided an overview
of important open source projects around SDN/OpenFlow. Open vSwitch, Pantou,
Indigo, LINC, XORPlus, and OF13SoftSwitch were among the important and active
open source projects around the SDN/OpenFlow switching. Beacon, Floodlight,
Maestro, Trema, FlowER, and Ryu were additional SDN/OpenFlow controllers that
we covered in this chapter. Besides, we also briefly mentioned other important active
projects like FlowVisor, Avior, RouteFlow, OFLops and Cbench, OSCARS, Twister,
FortNOX, Nettle, Frenetic, and OESS.

Index
Symbols
_handle_connectionUp method 76

A
Access Control List (ACL) rules 52
Active Network 9
act_like_switch() function 44
application specific integrated circuits

(ASICs) 23, 118
asynchronous messages

about 19
error 20
flow-removal 20
packet-in 20
port-status 20

Avior
about 126
features 126
URL 127

B
Beacon 121
Big Switch Neutron Plugin

URL 110
building blocks

controller 10
OpenFlow switches 10

building blocks, OpenFlow laboratory
60, 61

C
Cbench 129
CheckFirewallRule method 83
Cinder 105
controllers

Beacon 121
Floodlight 121
FlowER 124
Maestro 123
Ryu 124
Trema 123

controller-to-switch messages
about 16
barrier 19
configuration 17
features 17
modify-state 17
read-state 18
send-packet 18

counters 12

D
dpctl 58
Drop action 13

E
Ethernet learning switch

building 78-81
developing 74-77

[134]

F
FLOOD action 12
Floodlight

about 52, 110, 121
setting up 110

Floodlight Net Apps
Circuit Pusher 52
Static Flow Pusher 52
Virtual Networking Filter 52

FloodLight OpenFlowHub page
URL 53

Floodlight OpenStack support 110
flow entries

counters 10
header fields 10

FlowER 124
FlowForwarding

URL 119
FLOW_MATCH structure

about 93
flow matches 93

flowmod (Flow Modification) 70
flow table

about 10
counters 12
Ethernet type field 11
IP protocol field 11
IP source and destination address field 11
port field 11

flow table modification messages
ADD 17
DELETE 18
MODIFY 18
MODIFY and DELETE 18

FlowVisor
about 54, 91, 125, 126
FLOW_MATCH structure 93
FlowVisor API 92
network slicing 89
Slice Actions structure 94
slicing 95
URL 126

FlowVisor API 92

FlowVisor API commands 93
add-flowspace <NAME> <DPID> <PRIOR-

ITY> <FLOW_MATCH> <SLICEAC-
TIONS> command 93

add-slice <slicename> <controller_url>
<email> command 92

list-flowspace command 93
list-slice-info <slicename> command 92
list-slices command 92
remove-flowspace <NAME> command 93
remove-slice <slicename> command 93
update-flowspace <NAME> <DPID>

<PRIORITY> <FLOW_MATCH>
<SLICEACTIONS> command 93

update-slice-password <slicename>
command 93

FortNOX
about 130
URL 130

Forwarding and Control Element Separation
(ForCES) 9

forwarding information base (FIB) 127
Frenetic

about 130
URL 130

G
General Switch Management Protocol

(GSMP) 8
Glance 105

H
hardware abstraction layer (HAL) 118
hardware Implementations, OpenFlow

switches 27
header fields 10
High-performance computing (HPC) 104
Horizon 105
hybrid OpenFlow switches 10

I
IETF Network Configuration Protocol 9
Indigo

about 28, 118
URL 119

[135]

Indigo virtual switch (IVS) 119
Infrastructure as a Service (IaaS) 103
Internet Engineering Task Force (IETF) 8
IP ToS 11

K
Keystone 105

L
l2_learning.py script 78
libuv platform 49
LINC 29, 119
Linux Traffic Control (tc) 56

M
Maestro 123
Mininet

about 29
benefits 29
experimenting with 33-37
features 29
pre-packaged VM image, downloading 30
virtualization system, downloading 30
VMware Player, using 30, 32

N
Net App development

Ethernet learning switch 74
simple firewall 82
simple forwarding application 85

NETCONF 9
Nettle

about 130
URL 130

Network Address Translation (NAT) 55
Networking as a Service (NaaS) 106
network virtualization

about 89, 90
analogy 90

Neutron 106
Neutron plugins

about 110
Floodlight 110

Neutron RestProxy plugin 110
utilizing 110

Neutron RestProxy plugin 110
neutron-server 107
NodeFlow

about 49-51
URL 49

Node.js
url 49

NORMAL action 12
northbound interface 21
NOX

about 42
URL 9, 42

O
ODL-based SDN laboratory

about 67
setting up 67-70

ODL controller
about 65, 66
architecture 66
GUI 67

OESS
about 131
URL 131

OF13SoftSwitch
about 29, 120
building blocks 120

OFlops
about 128
building blocks 128

OpenDaylight
about 53, 65
ODL-based SDN laboratory 67
ODL controller 65, 66
URL 53, 65

OpenDaylight controller 85
OpenFlow

about 7
building blocks 9, 11
environment, setting up 55
history 8, 9
northbound interface 21

[136]

OpenFlow controllers
about 39, 40
Floodlight 52
implementing 41
Net Apps 39
NodeFlow 49
NOX 42
POX 42
POX application, running 43, 44
special controllers 54

OpenFlow laboratory
about 55
building blocks 60
ethX, replacing 62
external controllers 59
Mininet host 55
setting up 60-64

OpenFlow messages
about 15, 16
asynchronous messages 19
controller-to-switch messages 16
symmetric messages 19

OpenFlow network
slicing, FlowVisor used 95-100

OpenFlow reference switch
about 23
asynchronous messages 26, 27
barrier message 26
configuration message 25
features message 25
implementing 24
modify state message 25
queue query message 26
read state message 25
send packet message 26
symmetric messages 27

OpenFlow switches
about 9
drop action 13
enqueue action 13
field modification actions 13
FLOOD action 12
flow entries, in flow table 10
flow table 10
forward action 12
hardware Implementations 27
hybrid 9

implementing 23
NORMAL action 12
OpenFlow reference switch 23
packet header fields 14
packet types 14
pure 9
software-based switches 28

Open Networking Foundation 9
Open Signaling Working Group

(OPENSIG) 8
open source projects

Avior 126
Cbench 129
FlowVisor 125
FortNOX 130
Frenetic 130
Nettle 130
OESS 131
OFlops 128
OSCARS 129
RouteFlow 127
Twister 129

OpenStack
about 103
architecture 104
Cinder 105
components 104
Glance 105
Horizon 105
installing, install-devstack script used 111
Keystone 105
Neutron 106
Swift 104

OpenStack Compute (Nova) 104
OpenStack devstack repo stable/grizzly

branch
URL 110

OpenStack networking architecture
about 106, 107
DHCP agent 108
L3 agent 108
physical data center networks 108
plugin agent 108

OpenStack networking ecosystem 106
OpenStack Networking service 107

[137]

Open vSwitch
about 28, 116, 117
URL 118

OpenWrt 118
Organizationally Unique Identifier

(OUI) 11
OSCARS

about 129
URL 129

P
packets

about 14
types 14

Pantou 29, 118
physical data center networks, OpenStack

API network 109
data network 109
external network 109
management network 109

Pica8
URL 119

Pica8 XORPlus
URL 120

POX
about 42

POX application
running 43-48

process ID (PID) 55
pure OpenFlow switches 10

R
RestProxy plugin 110
REST (Representational State Transfer)

interface 105
RF-Controller (RF-C) application 127
round trip time (RTT) 56
RouteFlow

about 54, 127, 128
components 127
URL 128

RouteFlow Client (RF-Client) 127
RouteFlow Proxy (RF-Proxy) 127
RouteFlow Server 127
Ryu 124

S
SANE/Ethane project

URL 9
SDN. See also OpenFlow

about 7, 8
hardware 8

Service Abstraction Layer (SAL) 65
simple firewall application

building 82-84
simple forwarding application

building 85-87
Slice Actions structure 94
software-based switches

about 28
LINC 29
Of13softswtich 29
Pantou (OpenWRT) 29

Software Defined Networking. See SDN
Spanning Tree Protocol (STP) 20
special controllers

Flowvisor 54
RouteFlow 54

Subnetwork Access Protocol (SNAP)
header 11

Swift 104
switches

Indigo 118
LINC 119
OF13SoftSwitch 120
Open vSwitch 116
Pantou 118
XORPlus 119

symmetric messages
about 19
echo 19
hello 19
vendor 19

T
Technical Steering Committee (TSC) 65
Transport Layer Security (TLS) connection

15
Trema 123
Twister

about 129
URL 130

[138]

V
VirtualBox 30
virtual Ethernet (veth) 29, 56
VirtualNetworkFilter module 110
VMwarePlayer 30

X
X11 forwarding

enabling, f rom PuTTy 62
XORPlus

about 119, 120
features 119

Thank you for buying
Software Defined Networking
with OpenFlow

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Raspberry Pi Networking
Cookbook
ISBN: 978-1-84969-460-5 Paperback: 204 pages

A practical collection of awesome Raspberry Pi
recipes that help you learn about the Internet of
Things

1.	 Learn how to install, administer, and maintain
your Raspberry Pi

2.	 Create a network fileserver for sharing
documents, music, and videos

3.	 Host a web portal, collaboration wiki, or even
your own wireless access point

4.	 Connect to your desktop remotely, with
minimum hassle

Network Backup with Bacula
How-To
ISBN: 978-1-84951-984-7 Paperback: 56 pages

Create an autonomous backup solution for your
computer network using practical, hands-on recipes

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Set up Bacula infrastructure.

3.	 Back up data and directories

4.	 Work with multiple-storage systems

Please check www.PacktPub.com for information on our titles

Network Analysis using
Wireshark Cookbook
ISBN: 978-1-84951-764-5 Paperback: 385 pages

110 receipes to analyze and troubleshoot network
problems using Wireshark

1.	 Place Wireshark in your network and configure
it for effective network analysis

2.	 Configure capture and display filters to get the
required data

3.	 Use Wireshark's powerful statistical tools to
analyze your network and its expert system to
pinpoint network problems

SolarWinds Orion Network
Performance Monitor
ISBN: 978-1-84968-848-2 Paperback: 336 pages

An essential guide for installing, implementing, and
calibrating SolarWinds Orion NPM

1.	 Master wireless monitoring and the control of
wireless access points

2.	 Learn how to respond quickly and efficiently to
network issues with SolarWinds Orion NPM

3.	 Build impressive reports to effectively visualize
issues, solutions, and the overall health of your
network

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing OpenFlow
	Understanding Software Defined Networking – OpenFlow flavor
	Activities around SDN/OpenFlow
	Building Blocks
	OpenFlow messages
	Controller-to-switch
	Features
	Configuration
	Modify-State
	Read-State
	Send-Packet
	Barrier

	Symmetric messages
	Hello
	Echo
	Vendor

	Asynchronous messages
	Packet-in
	Flow-Removal
	Port-status
	Error

	Northbound interface
	Summary

	Chapter 2: Implementing the OpenFlow Switch
	OpenFlow reference switch
	Asynchronous messages
	Symmetric Messages

	Hardware Implementations
	Software-based switches
	OpenFlow laboratory with Mininet
	Getting started with Mininet
	Experimenting with Mininet

	Summary

	Chapter 3: The OpenFlow Controllers
	SDN controllers
	Existing implementations
	NOX and POX
	Running a POX application
	NodeFlow
	Floodlight

	OpenDaylight
	Special controllers

	Summary

	Chapter 4: Setting Up the Environment
	Understanding the OpenFlow laboratory
	External controllers
	Completing the OpenFlow laboratory

	OpenDaylight
	ODL controller
	ODL-based SDN laboratory

	Summary

	Chapter 5: "Net App" Development
	Net App 1 – an Ethernet learning switch
	Building the learning switch

	Net App 2 – A simple firewall
	Net App 3 – simple forwarding in OpenDaylight
	Summary

	Chapter 6: Getting a Network Slice
	Network virtualization
	FlowVisor
	FlowVisor API
	FLOW_MATCH structure
	Slice actions structure

	FlowVisor slicing
	Summary

	Chapter 7: OpenFlow in Cloud Computing
	OpenStack and Neutron
	OpenStack Networking Architecture
	Neutron plugins
	Summary

	Chapter 8: Open Source Resources
	Switches
	Open vSwitch
	Pantou
	Indigo
	LINC
	XORPlus
	OF13SoftSwitch

	Controllers
	Beacon
	Floodlight
	Maestro
	Trema
	FlowER
	Ryu

	Miscellaneous
	FlowVisor
	Avior
	RouteFlow
	OFlops and Cbench
	OSCARS
	Twister
	FortNOX
	Nettle
	Frenetic
	OESS

	Summary

	Index

