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Chapter 1

Syllabus

1.1 Letter to Student1

To the Student:
This course and this Student Manual re�ect a collective e�ort by your instructor, the Vietnam Education

Foundation, the Vietnam Open Courseware (VOCW) Project and faculty colleagues within Vietnam and
the United States who served as reviewers of drafts of this Student Manual. This course is an important
component of our academic program. Although it has been o�ered for many years, this latest version
represents an attempt to expand the range of sources of information and instruction so that the course
continues to be up-to-date and the methods well suited to what is to be learned.

This Student Manual is designed to assist you through the course by providing speci�c information about
student responsibilities including requirements, timelines and evaluations.

You will be asked from time-to-time to o�er feedback on how the Student Manual is working and how
the course is progressing. Your comments will inform the development team about what is working and
what requires attention. Our goal is to help you learn what is important about this particular �eld and to
eventually succeed as a professional applying what you learn in this course.

Thank you for your cooperation.
Tuan Do-Hong.

1.2 Contact Information2

Faculty Information: Department of Telecommunications Engineering, Faculty of Electrical and Electron-
ics Engineering, Ho Chi Minh City University of Technology

Instructor: Dr.-Ing. Tuan Do-Hong
O�ce Location: Ground �oor, B3 Building
Phone: +84 (0) 8 8654184
Email: do-hong@hcmut.edu.vn
O�ce Hours: 9:00 am � 5:00 pm
Assistants:
O�ce Location: Ground �oor, B3 Building
Phone: +84 (0) 8 8654184
Email:
O�ce Hours: 9:00 am � 5:00 pm
Lab sections/support:

1This content is available online at <http://cnx.org/content/m15429/1.1/>.
2This content is available online at <http://cnx.org/content/m15431/1.3/>.

Available for free at Connexions <http://cnx.org/content/col10474/1.7>
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2 CHAPTER 1. SYLLABUS

1.3 Resources3

Connexions: http://cnx.org/4

MIT's OpenCourseWare: http://ocw.mit.edu/index.html5

Computer resource: Matlab and Simulink
Textbook(s):
Required:
[1] Bernard Sklar, Digital Communications: Fundamentals and Applications, 2nd edition, 2001,

Prentice Hall.
Recommended:
[2] John Proakis, Digital Communications, 4th edition, 2001, McGraw-Hill.
[3] Bruce Carlson et al., Communication Systems: An Introduction to Signals and Noise in

Electrical Communication, 4th edition, 2001, McGraw-Hill.
[4] Rogger E. Ziemer, Roger W. Peterson, Introduction to Digital Communication, 2nd edition,

2000, Prenctice Hall.

1.4 Purpose of the Course6

Title: Principles of Digital Communications
Credits: 3 (4 hours/week, 15 weeks/semester)
Course Rationale:
Wireless communication is fundamentally the art of communicating information without wires. In prin-

ciple, wireless communication encompasses any number of techniques including underwater acoustic com-
munication, radio communication, and satellite communication, among others. The term was coined in the
early days of radio, fell out of fashion for about �fty years, and was rediscovered during the cellular telephony
revolution. Wireless now implies communication using electromagnetic waves - placing it within the domain
of electrical engineering. Wireless communication techniques can be classi�ed as either analog or digital. The
�rst commercial systems were analog including AM radio, FM radio, television, and �rst generation cellular
systems. Analog communication is gradually being replaced with digital communication. The fundamental
di�erence between the two is that in digital communication, the source is assumed to be digital. Every major
wireless system being developed and deployed is built around digital communication including cellular com-
munication, wireless local area networking, personal area networking, and high-de�nition television. Thus
this course will focus on digital wireless communication.

This course is a required core course in communications engineering which introduces principles of digital
communications while reinforcing concepts learned in analog communications systems. It is intended to
provide a comprehensive coverage of digital communication systems for last year undergraduate students,
�rst year graduate students and practicing engineers.

Pre-requisites: Communication Systems. Thorough knowledge of Signals and Systems, Linear
Algebra, Digital Signal Processing, and Probability Theory and Stochastic Processes is essential.

1.5 Course Description7

This course explores elements of the theory and practice of digital communications. The course will 1)
model and study the e�ects of channel impairments such as distortion, noise, interference, and fading, on the
performance of communication systems; 2) introduce signal processing, modulation, and coding techniques
that are used in digital communication systems. The concepts/ tools are acquired in this course:

3This content is available online at <http://cnx.org/content/m15438/1.3/>.
4http://cnx.org/
5http://ocw.mit.edu/index.html
6This content is available online at <http://cnx.org/content/m15433/1.2/>.
7This content is available online at <http://cnx.org/content/m15435/1.4/>.

Available for free at Connexions <http://cnx.org/content/col10474/1.7>
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Signals and Systems
Classi�cation of signals and systems
Orthogonal functions, Fourier series, Fourier transform
Spectra and �ltering
Sampling theory, Nyquist theorem
Random processes, autocorrelation, power spectrum
Systems with random input/output
Source Coding
Elements of compression, Hu�man coding
Elements of quantization theory
Pulse code Modulation (PCM) and variations
Rate/bandwidth calculations in communication systems
Communication over AWGN Channels
Signals and noise, Eb/N0
Receiver structure, demodulation and detection
Correlation receiver and matched �lter
Detection of binary signals in AWGN
Optimal detection for general modulation
Coherent and non-coherent detection
Communication over Band-limited AWGN Channel
ISI in band-limited channels
Zero-ISI condition: the Nyquist criterion
Raised cosine �lters
Partial response signals
Equalization using zero-forcing criterion
Channel Coding
Types of error control
Block codes
Error detection and correction
Convolutional codes and the Viterbi algorithm
Communication over Fading Channel
Fading channels
Characterizing mobile-radio propagation
Signal Time-Spreading
Mitigating the e�ects of fading
Application of Viterbi equalizer in GSM system
Application of Rake receiver in CDMA system

1.6 Calendar8

Week 1: Overview of signals and spectra
Week 2: Source coding
Week 3: Receiver structure, demodulation and detection
Week 4: Correlation receiver and matched �lter. Detection of binary signals in AWGN
Week 5: Optimal detection for general modulation. Coherent and non-coherent detection (I)
Week 6: Coherent and non-coherent detection (II)
Week 7: ISI in band-limited channels. Zero-ISI condition: the Nyquist criterion
Week 8: Mid-term exam
Week 9: Raised cosine �lters. Partial response signals

8This content is available online at <http://cnx.org/content/m15448/1.3/>.

Available for free at Connexions <http://cnx.org/content/col10474/1.7>



4 CHAPTER 1. SYLLABUS

Week 10: Channel equalization
Week 11: Channel coding. Block codes
Week 12: Convolutional codes
Week 13: Viterbi algorithm
Week 14: Fading channel. Characterizing mobile-radio propagation
Week 15: Mitigating the e�ects of fading
Week 16: Applications of Viterbi equalizer and Rake receiver in GSM and CDMA systems
Week 17: Final exam

1.7 Grading Procedures9

Homework/Participation/Exams:

• Homework and Programming Assignments
• Midterm Exam
• Final Exam

Homework and programming assignments will be given to test student's knowledge and understanding of the
covered topics. Homework and programming assignments will be assigned frequently throughout the course
and will be due in the time and place indicated on the assignment. Homework and programming assignments
must be individually done by each student without collaboration with others. No late homework will be
allowed.

There will be in-class mid-term and �nal exams. The mid-term exam and the �nal exam will be time-
limited to 60 minutes and 120 minutes, respectively. They will be closed book and closed notes. It is
recommend that the students practice working problems from the book, example problems, and homework
problems.

Participation: Question and discussion in class are encouraged. Participation will be noted.
Grades for this course will be based on the following weighting:

• Homework and In-class Participation: 20%
• Programming Assignments: 20%
• Mid-term Exam: 20%
• Final Exam: 40%

9This content is available online at <http://cnx.org/content/m15437/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10474/1.7>



Chapter 2

Chapter 1: Signals and Systems

2.1 Signal Classi�cations and Properties1

2.1.1 Introduction

This module will begin our study of signals and systems by laying out some of the fundamentals of signal clas-
si�cation. It is essentially an introduction to the important de�nitions and properties that are fundamental
to the discussion of signals and systems, with a brief discussion of each.

2.1.2 Classi�cations of Signals

2.1.2.1 Continuous-Time vs. Discrete-Time

As the names suggest, this classi�cation is determined by whether or not the time axis is discrete (countable)
or continuous (Figure 2.1). A continuous-time signal will contain a value for all real numbers along the
time axis. In contrast to this, a discrete-time signal2, often created by sampling a continuous signal, will
only have values at equally spaced intervals along the time axis.

Figure 2.1

1This content is available online at <http://cnx.org/content/m10057/2.23/>.
2"Discrete-Time Signals" <http://cnx.org/content/m0009/latest/>

Available for free at Connexions <http://cnx.org/content/col10474/1.7>

5



6 CHAPTER 2. CHAPTER 1: SIGNALS AND SYSTEMS

2.1.2.2 Analog vs. Digital

The di�erence between analog and digital is similar to the di�erence between continuous-time and discrete-
time. However, in this case the di�erence involves the values of the function. Analog corresponds to a
continuous set of possible function values, while digital corresponds to a discrete set of possible function
values. An common example of a digital signal is a binary sequence, where the values of the function can
only be one or zero.

Figure 2.2

2.1.2.3 Periodic vs. Aperiodic

Periodic signals3 repeat with some period T , while aperiodic, or nonperiodic, signals do not (Figure 2.3).
We can de�ne a periodic function through the following mathematical expression, where t can be any number
and T is a positive constant:

f (t) = f (t+ T ) (2.1)

fundamental period of our function, f (t), is the smallest value of T that the still allows (2.1) to be true.

(a)

(b)

Figure 2.3: (a) A periodic signal with period T0 (b) An aperiodic signal

3"Continuous Time Periodic Signals" <http://cnx.org/content/m10744/latest/>
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2.1.2.4 Finite vs. In�nite Length

Another way of classifying a signal is in terms of its length along its time axis. Is the signal de�ned for all
possible values of time, or for only certain values of time? Mathematically speaking, f (t) is a �nite-length
signal if it is de�ned only over a �nite interval

t1 < t < t2

where t1 < t2. Similarly, an in�nite-length signal, f (t), is de�ned for all values:

−∞ < t <∞

2.1.2.5 Causal vs. Anticausal vs. Noncausal

Causal signals are signals that are zero for all negative time, while anticausal are signals that are zero for
all positive time. Noncausal signals are signals that have nonzero values in both positive and negative time
(Figure 2.4).

Available for free at Connexions <http://cnx.org/content/col10474/1.7>
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(a)

(b)

(c)

Figure 2.4: (a) A causal signal (b) An anticausal signal (c) A noncausal signal

2.1.2.6 Even vs. Odd

An even signal is any signal f such that f (t) = f (−t). Even signals can be easily spotted as they
are symmetric around the vertical axis. An odd signal, on the other hand, is a signal f such that
f (t) = −f (−t) (Figure 2.5).

Available for free at Connexions <http://cnx.org/content/col10474/1.7>
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(a)

(b)

Figure 2.5: (a) An even signal (b) An odd signal

Using the de�nitions of even and odd signals, we can show that any signal can be written as a combination
of an even and odd signal. That is, every signal has an odd-even decomposition. To demonstrate this, we
have to look no further than a single equation.

f (t) =
1
2

(f (t) + f (−t)) +
1
2

(f (t)− f (−t)) (2.2)

By multiplying and adding this expression out, it can be shown to be true. Also, it can be shown that
f (t) + f (−t) ful�lls the requirement of an even function, while f (t) − f (−t) ful�lls the requirement of an
odd function (Figure 2.6).

Example 2.1

Available for free at Connexions <http://cnx.org/content/col10474/1.7>
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(a)

(b)

(c)

(d)

Figure 2.6: (a) The signal we will decompose using odd-even decomposition (b) Even part: e (t) =
1
2

(f (t) + f (−t)) (c) Odd part: o (t) = 1
2

(f (t)− f (−t)) (d) Check: e (t) + o (t) = f (t)
Available for free at Connexions <http://cnx.org/content/col10474/1.7>
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2.1.2.7 Deterministic vs. Random

A deterministic signal is a signal in which each value of the signal is �xed, being determined by a
mathematical expression, rule, or table. On the other hand, the values of a random signal4 are not strictly
de�ned, but are subject to some amount of variability.

(a)

(b)

Figure 2.7: (a) Deterministic Signal (b) Random Signal

Example 2.2
Consider the signal de�ned for all real t described by

f (t) = {
sin (2πt) /t t ≥ 1

0 t < 1
(2.3)

This signal is continuous time, analog, aperiodic, in�nite length, causal, neither even nor odd, and,
by de�nition, deterministic.

2.1.3 Signal Classi�cations Summary

This module describes just some of the many ways in which signals can be classi�ed. They can be continuous
time or discrete time, analog or digital, periodic or aperiodic, �nite or in�nite, and deterministic or random.
We can also divide them based on their causality and symmetry properties.

2.2 System Classi�cations and Properties5

2.2.1 Introduction

In this module some of the basic classi�cations of systems will be brie�y introduced and the most important
properties of these systems are explained. As can be seen, the properties of a system provide an easy way
to distinguish one system from another. Understanding these basic di�erences between systems, and their
properties, will be a fundamental concept used in all signal and system courses. Once a set of systems can be

4"Introduction to Random Signals and Processes" <http://cnx.org/content/m10649/latest/>
5This content is available online at <http://cnx.org/content/m10084/2.24/>.
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identi�ed as sharing particular properties, one no longer has to reprove a certain characteristic of a system
each time, but it can simply be known due to the the system classi�cation.

2.2.2 Classi�cation of Systems

2.2.2.1 Continuous vs. Discrete

One of the most important distinctions to understand is the di�erence between discrete time and continuous
time systems. A system in which the input signal and output signal both have continuous domains is said
to be a continuous system. One in which the input signal and output signal both have discrete domains is
said to be a discrete system. Of course, it is possible to conceive of signals that belong to neither category,
such as systems in which sampling of a continuous time signal or reconstruction from a discrete time signal
take place.

2.2.2.2 Linear vs. Nonlinear

A linear system is any system that obeys the properties of scaling (�rst order homogeneity) and superposition
(additivity) further described below. A nonlinear system is any system that does not have at least one of
these properties.

To show that a system H obeys the scaling property is to show that

H (kf (t)) = kH (f (t)) (2.4)

Figure 2.8: A block diagram demonstrating the scaling property of linearity

To demonstrate that a system H obeys the superposition property of linearity is to show that

H (f1 (t) + f2 (t)) = H (f1 (t)) +H (f2 (t)) (2.5)

Available for free at Connexions <http://cnx.org/content/col10474/1.7>
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Figure 2.9: A block diagram demonstrating the superposition property of linearity

It is possible to check a system for linearity in a single (though larger) step. To do this, simply combine
the �rst two steps to get

H (k1f1 (t) + k2f2 (t)) = k1H (f1 (t)) + k2H (f2 (t)) (2.6)

2.2.2.3 Time Invariant vs. Time Varying

A system is said to be time invariant if it commutes with the parameter shift operator de�ned by ST (f (t)) =
f (t− T ) for all T , which is to say

HST = STH (2.7)

for all real T . Intuitively, that means that for any input function that produces some output function, any
time shift of that input function will produce an output function identical in every way except that it is
shifted by the same amount. Any system that does not have this property is said to be time varying.

Figure 2.10: This block diagram shows what the condition for time invariance. The output is the
same whether the delay is put on the input or the output.

2.2.2.4 Causal vs. Noncausal

A causal system is one in which the output depends only on current or past inputs, but not future inputs.
Similarly, an anticausal system is one in which the output depends only on current or future inputs, but not
past inputs. Finally, a noncausal system is one in which the output depends on both past and future inputs.
All "realtime" systems must be causal, since they can not have future inputs available to them.

Available for free at Connexions <http://cnx.org/content/col10474/1.7>
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One may think the idea of future inputs does not seem to make much physical sense; however, we have
only been dealing with time as our dependent variable so far, which is not always the case. Imagine rather
that we wanted to do image processing. Then the dependent variable might represent pixel positions to the
left and right (the "future") of the current position on the image, and we would not necessarily have a causal
system.

(a)

(b)

Figure 2.11: (a) For a typical system to be causal... (b) ...the output at time t0, y (t0), can only
depend on the portion of the input signal before t0.

2.2.2.5 Stable vs. Unstable

There are several de�nitions of stability, but the one that will be used most frequently in this course will
be bounded input, bounded output (BIBO) stability. In this context, a stable system is one in which the
output is bounded if the input is also bounded. Similarly, an unstable system is one in which at least one
bounded input produces an unbounded output.

Representing this mathematically, a stable system must have the following property, where x (t) is the
input and y (t) is the output. The output must satisfy the condition

|y (t) | ≤My <∞ (2.8)

whenever we have an input to the system that satis�es

|x (t) | ≤Mx <∞ (2.9)

Mx andMy both represent a set of �nite positive numbers and these relationships hold for all of t. Otherwise,
the system is unstable.

Available for free at Connexions <http://cnx.org/content/col10474/1.7>
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2.2.3 System Classi�cations Summary

This module describes just some of the many ways in which systems can be classi�ed. Systems can be
continuous time, discrete time, or neither. They can be linear or nonlinear, time invariant or time varying,
and stable or unstable. We can also divide them based on their causality properties. There are other ways
to classify systems, such as use of memory, that are not discussed here but will be described in subsequent
modules.

2.3 The Fourier Series6

2.3.1 Theorems on the Fourier Series

Four of the most important theorems in the theory of Fourier analysis are the inversion theorem, the con-
volution theorem, the di�erentiation theorem, and Parseval's theorem [4]. All of these are based on the
orthogonality of the basis function of the Fourier series and integral and all require knowledge of the conver-
gence of the sums and integrals. The practical and theoretical use of Fourier analysis is greatly expanded
if use is made of distributions or generalized functions [8][1]. Because energy is an important measure of a
function in signal processing applications, the Hilbert space of L2 functions is a proper setting for the basic
theory and a geometric view can be especially useful [5][4].

The following theorems and results concern the existence and convergence of the Fourier series and the
discrete-time Fourier transform [7]. Details, discussions and proofs can be found in the cited references.

• If f (x) has bounded variation in the interval (−π, π), the Fourier series corresponding to f (x) converges
to the value f (x) at any point within the interval, at which the function is continuous; it converges
to the value 1

2 [f (x+ 0) + f (x− 0)] at any such point at which the function is discontinuous. At the
points π,−π it converges to the value 1

2 [f (−π + 0) + f (π − 0)]. [6]
• If f (x) is of bounded variation in (−π, π), the Fourier series converges to f (x), uniformly in any

interval (a, b) in which f (x) is continuous, the continuity at a and b being on both sides. [6]
• If f (x) is of bounded variation in (−π, π), the Fourier series converges to 1

2 [f (x+ 0) + f (x− 0)],
bounded throughout the interval (−π, π). [6]

• If f (x) is bounded and if it is continuous in its domain at every point, with the exception of a �nite
number of points at which it may have ordinary discontinuities, and if the domain may be divided into
a �nite number of parts, such that in any one of them the function is monotone; or, in other words,
the function has only a �nite number of maxima and minima in its domain, the Fourier series of f (x)
converges to f (x) at points of continuity and to 1

2 [f (x+ 0) + f (x− 0)] at points of discontinuity.
[6][3]

• If f (x) is such that, when the arbitrarily small neighborhoods of a �nite number of points in whose
neighborhood |f (x) | has no upper bound have been excluded, f (x) becomes a function with bounded
variation, then the Fourier series converges to the value 1

2 [f (x+ 0) + f (x− 0)], at every point in
(−π, π), except the points of in�nite discontinuity of the function, provided the improper integral∫ π
−π f (x) dx exist, and is absolutely convergent. [6]

• If f is of bounded variation, the Fourier series of f converges at every point x to the value
[f (x+ 0) + f (x− 0)] /2. If f is, in addition, continuous at every point of an interval I = (a, b),
its Fourier series is uniformly convergent in I. [10]

• If a (k) and b (k) are absolutely summable, the Fourier series converges uniformly to f (x) which is
continuous. [7]

• If a (k) and b (k) are square summable, the Fourier series converges to f (x) where it is continuous, but
not necessarily uniformly. [7]

• Suppose that f (x) is periodic, of period X, is de�ned and bounded on [0, X] and that at least one
of the following four conditions is satis�ed: (i) f is piecewise monotonic on [0, X], (ii) f has a �nite

6This content is available online at <http://cnx.org/content/m13873/1.1/>.
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number of maxima and minima on [0, X] and a �nite number of discontinuities on [0, X], (iii) f is of
bounded variation on [0, X], (iv) f is piecewise smooth on [0, X]: then it will follow that the Fourier
series coe�cients may be de�ned through the de�ning integral, using proper Riemann integrals, and
that the Fourier series converges to f (x) at a.a.x, to f (x) at each point of continuity of f , and to the
value 1

2 [f (x−) + f (x+)] at all x. [4]
• For any 1 ≤ p <∞ and any f ∈ Cp

(
S1
)
, the partial sums

Sn = Sn (f) =
∑
|k|≤n

f̂ (k) ek (2.10)

converge to f , uniformly as n→∞; in fact, ||Sn − f ||∞ is bounded by a constant multiple of n−p+1/2.
[5]

The Fourier series expansion results in transforming a periodic, continuous time function, x̃ (t), to two
discrete indexed frequency functions, a (k) and b (k) that are not periodic.

2.4 The Fourier Transform7

2.4.1 The Fourier Transform

Many practical problems in signal analysis involve either in�nitely long or very long signals where the
Fourier series is not appropriate. For these cases, the Fourier transform (FT) and its inverse (IFT) have
been developed. This transform has been used with great success in virtually all quantitative areas of science
and technology where the concept of frequency is important. While the Fourier series was used before Fourier
worked on it, the Fourier transform seems to be his original idea. It can be derived as an extension of the
Fourier series by letting the length increase to in�nity or the Fourier transform can be independently de�ned
and then the Fourier series shown to be a special case of it. The latter approach is the more general of the
two, but the former is more intuitive [9][2].

2.4.1.1 De�nition of the Fourier Transform

The Fourier transform (FT) of a real-valued (or complex) function of the real-variable t is de�ned by

X (ω) =
∫ ∞
−∞

x (t) e−jωtdt (2.11)

giving a complex valued function of the real variable ω representing frequency. The inverse Fourier transform
(IFT) is given by

x (t) =
1

2π

∫ ∞
−∞

X (ω) ejωtdω. (2.12)

Because of the in�nite limits on both integrals, the question of convergence is important. There are useful
practical signals that do not have Fourier transforms if only classical functions are allowed because of problems
with convergence. The use of delta functions (distributions) in both the time and frequency domains allows
a much larger class of signals to be represented [9].

2.4.1.2 Examples of the Fourier Transform

Deriving a few basic transforms and using the properties allows a large class of signals to be easily studied.
Examples of modulation, sampling, and others will be given.

• If x (t) = δ (t) then X (ω) = 1

7This content is available online at <http://cnx.org/content/m13874/1.2/>.
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• If x (t) = 1 then X (ω) = 2πδ (ω)
• If x (t) is an in�nite sequence of delta functions spaced T apart, x (t) =

∑∞
n=−∞ δ (t− nT ), its trans-

form is also an in�nite sequence of delta functions of weight 2π/T spaced 2π/T apart, X (ω) =
2π
∑∞
k=−∞ δ (ω − 2πk/T ).

• Other interesting and illustrative examples can be found in [9][2].

Note the Fourier transform takes a function of continuous time into a function of continuous frequency,
neither function being periodic. If �distribution" or �delta functions" are allowed, the Fourier transform of
a periodic function will be a in�nitely long string of delta functions with weights that are the Fourier series
coe�cients.
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2.5 Review of Probability and Random Variables 8

The focus of this course is on digital communication, which involves transmission of information, in its
most general sense, from source to destination using digital technology. Engineering such a system requires
modeling both the information and the transmission media. Interestingly, modeling both digital or analog
information and many physical media requires a probabilistic setting. In this chapter and in the next one we
will review the theory of probability, model random signals, and characterize their behavior as they traverse
through deterministic systems disturbed by noise and interference. In order to develop practical models for
random phenomena we start with carrying out a random experiment. We then introduce de�nitions, rules,
and axioms for modeling within the context of the experiment. The outcome of a random experiment is
denoted by ω. The sample space Ω is the set of all possible outcomes of a random experiment. Such outcomes
could be an abstract description in words. A scienti�c experiment should indeed be repeatable where each
outcome could naturally have an associated probability of occurrence. This is de�ned formally as the ratio
of the number of times the outcome occurs to the total number of times the experiment is repeated.

2.5.1 Random Variables

A random variable is the assignment of a real number to each outcome of a random experiment.

Figure 2.12

Example 2.3
Roll a dice. Outcomes {ω1, ω2, ω3, ω4, ω5, ω6}
ωi = i dots on the face of the dice.
X (ωi) = i

2.5.2 Distributions

Probability assignments on intervals a < X ≤ b
De�nition 2.1: Cumulative distribution
The cumulative distribution function of a random variable X is a function F X (R 7→ R ) such that

F X (b ) = Pr [X ≤ b]
= Pr [{ω ∈ Ω | X (ω) ≤ b}]

(2.13)

8This content is available online at <http://cnx.org/content/m10224/2.16/>.
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Figure 2.13

De�nition 2.2: Continuous Random Variable
A random variable X is continuous if the cumulative distribution function can be written in an
integral form, or

F X (b ) =
∫ b

−∞
f X (x ) dx (2.14)

and f X (x ) is the probability density function (pdf) (e.g., F X (x ) is di�erentiable and f X (x ) =
d
dx (F X (x )))
De�nition 2.3: Discrete Random Variable
A random variable X is discrete if it only takes at most countably many points (i.e., F X ( · ) is
piecewise constant). The probability mass function (pmf) is de�ned as

p X (xk ) = Pr [X = xk]

= F X (xk )− limit
x(x→xk) ∧ (x<xk)

F X (x )
(2.15)

Two random variables de�ned on an experiment have joint distribution

F X,,,Y (a, b ) = Pr [X ≤ a, Y ≤ b]
= Pr [{ω ∈ Ω | (X (ω) ≤ a) ∧ (Y (ω) ≤ b)}]

(2.16)
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Figure 2.14

Joint pdf can be obtained if they are jointly continuous

F X,,,Y (a, b ) =
∫ b

−∞

∫ a

−∞
f X,Y (x, y ) dxdy (2.17)

(e.g., f X,Y (x, y ) = ∂2F X,,,Y (x,y )
∂x∂y )

Joint pmf if they are jointly discrete

p X,Y (xk, yl ) = Pr [X = xk, Y = yl] (2.18)

Conditional density function

fY |X (y|x) =
f X,Y (x, y )
f X (x )

(2.19)

for all x with f X (x ) > 0 otherwise conditional density is not de�ned for those values of x with f X (x ) = 0
Two random variables are independent if

f X,Y (x, y ) = f X (x ) f Y (y ) (2.20)

for all x ∈ R and y ∈ R. For discrete random variables,

p X,Y (xk, yl ) = p X (xk ) p Y (yl ) (2.21)

for all k and l.

2.5.3 Moments

Statistical quantities to represent some of the characteristics of a random variable.

−
g (X) = E [g (X)]

=


∫∞
−∞ g (x) f X (x ) dx if continuous∑
k g (xk) p X (xk ) if discrete

(2.22)
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• Mean

µX =
−
X (2.23)

• Second moment

E
[
X2
]

=
−
X2 (2.24)

• Variance

Var (X) = σ (X)2

=
−

(X − µX)2

=
−
X2 −µX2

(2.25)

• Characteristic function

ΦX (u) =
−

eiuX (2.26)

for u ∈ R, where i =
√
−1

• Correlation between two random variables

RXY =
−

XY ∗

=


∫∞
−∞

∫∞
−∞ xy∗f X,Y (x, y ) dxdy if X and Y are jointly continuous∑

k

∑
l xky

∗
l p X,Y (xk, yl ) if X and Y are jointly discrete

(2.27)

• Covariance

CXY = Cov (X,Y )

=
−

(X − µX) (Y − µY )∗

= RXY − µXµ∗Y

(2.28)

• Correlation coe�cient

ρXY =
Cov (X,Y )
σXσY

(2.29)

De�nition 2.4: Uncorrelated random variables
Two random variables X and Y are uncorrelated if ρXY = 0.

2.6 Introduction to Stochastic Processes9

2.6.1 De�nitions, distributions, and stationarity

De�nition 2.5: Stochastic Process
Given a sample space, a stochastic process is an indexed collection of random variables de�ned for
each ω ∈ Ω.

∀t, t ∈ R : (Xt (ω)) (2.30)

Example 2.4
Received signal at an antenna as in Figure 2.15.

9This content is available online at <http://cnx.org/content/m10235/2.15/>.
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Figure 2.15

For a given t, Xt (ω) is a random variable with a distribution

First-order distribution

FXt (b) = Pr [Xt ≤ b]
= Pr [{ω ∈ Ω | Xt (ω) ≤ b}]

(2.31)

De�nition 2.6: First-order stationary process
If FXt (b) is not a function of time then Xt is called a �rst-order stationary process.

Second-order distribution

FXt1 ,Xt2 (b1, b2) = Pr [Xt1 ≤ b1, Xt2 ≤ b2] (2.32)

for all t1 ∈ R, t2 ∈ R, b1 ∈ R, b2 ∈ R
Nth-order distribution

FXt1 ,Xt2 ,...,XtN (b1, b2, . . . , bN ) = Pr [Xt1 ≤ b1, . . . , XtN ≤ bN ] (2.33)

Nth-order stationary : A random process is stationary of order N if

FXt1 ,Xt2 ,...,XtN (b1, b2, . . . , bN ) = FXt1+T ,Xt2+T ,...,XtN+T (b1, b2, . . . , bN ) (2.34)

Strictly stationary : A process is strictly stationary if it is Nth order stationary for all N .

Example 2.5
Xt = cos (2πf0t+ Θ (ω)) where f0 is the deterministic carrier frequency and Θ (ω) : Ω → R
is a random variable de�ned over [−π, π] and is assumed to be a uniform random variable; i.e.,
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fΘ (θ) =

 1
2π if θ ∈ [−π, π]

0 otherwise

FXt (b) = Pr [Xt ≤ b]
= Pr [cos (2πf0t+ Θ) ≤ b]

(2.35)

FXt (b) = Pr [−π ≤ 2πf0t+ Θ ≤ −arccos (b)] + Pr [arccos (b) ≤ 2πf0t+ Θ ≤ π] (2.36)

FXt (b) =
∫ (−arccos(b))−2πf0t

(−π)−2πf0t
1

2πdθ +
∫ π−2πf0t

arccos(b)−2πf0t
1

2πdθ

= (2π − 2arccos (b)) 1
2π

(2.37)

fXt (x) = d
dx

(
1− 1

πarccos (x)
)

=

 1
π
√

1−x2 if |x| ≤ 1

0 otherwise

(2.38)

This process is stationary of order 1.

Figure 2.16

The second order stationarity can be determined by �rst considering conditional densities and
the joint density. Recall that

Xt = cos (2πf0t+ Θ) (2.39)

Then the relevant step is to �nd

Pr [Xt2 ≤ b2 | Xt1 = x1] (2.40)
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Note that
(Xt1 = x1 = cos (2πf0t+ Θ))⇒ (Θ = arccos (x1)− 2πf0t) (2.41)

Xt2 = cos (2πf0t2 + arccos (x1)− 2πf0t1)

= cos (2πf0 (t2 − t1) + arccos (x1))
(2.42)

Figure 2.17

FXt2 ,Xt1 (b2, b1) =
∫ b1

−∞
fXt1 (x1)Pr [Xt2 ≤ b2 | Xt1 = x1] dx 1 (2.43)

Note that this is only a function of t2 − t1.
Example 2.6
Every T seconds, a fair coin is tossed. If heads, then Xt = 1 for nT ≤ t < (n+ 1)T . If tails, then
Xt = −1 for nT ≤ t < (n+ 1)T .

Figure 2.18

pXt (x) =

 1
2 if x = 1
1
2 if x = −1

(2.44)

for all t ∈ R. Xt is stationary of order 1.
Second order probability mass function

pXt1Xt2 (x1, x2) = pXt2 |Xt1 (x2|x1) pXt1 (x1) (2.45)
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The conditional pmf

pXt2 |Xt1 (x2|x1) =

 0 if x2 6= x1

1 if x2 = x1

(2.46)

when nT ≤ t1 < (n+ 1)T and nT ≤ t2 < (n+ 1)T for some n.

pXt2 |Xt1 (x2|x1) = pXt2 (x2) (2.47)

for all x1 and for all x2 when nT ≤ t1 < (n+ 1)T and mT ≤ t2 < (m+ 1)T with n 6= m

pXt2Xt1
(x2, x1) =


0 if x2 6= x1for nT ≤ t1, t2 < (n+ 1)T

pXt1
(x1) if x2 = x1for nT ≤ t1, t2 < (n+ 1)T

pXt1
(x1) pXt2

(x2) if n 6= mfor (nT ≤ t1 < (n+ 1)T ) ∧ (mT ≤ t2 < (m+ 1)T )

(2.48)

2.7 Second-order Description of Stochastic Processes10

2.7.1 Second-order description

Practical and incomplete statistics

De�nition 2.7: Mean
The mean function of a random process Xt is de�ned as the expected value of Xt for all t's.

µXt = E [Xt]

=


∫∞
−∞ xf Xt (x ) dx if continuous∑∞
k=−∞ xkp Xt (xk ) if discrete

(2.49)

De�nition 2.8: Autocorrelation
The autocorrelation function of the random process Xt is de�ned as

RX (t2, t1) = E
[
Xt2Xt1

]
=


∫∞
−∞

∫∞
−∞ x2x1f Xt2 ,Xt1 (x2, x1 ) dx 1dx 2 if continuous∑∞

k=−∞
∑∞
l=−∞ xlxkp Xt2 ,Xt1 (xl, xk ) if discrete

(2.50)

Rule 2.1:
If Xt is second-order stationary, then RX (t2, t1) only depends on t2 − t1.
Proof:

RX (t2, t1) = E
[
Xt2Xt1

]
=

∫∞
−∞

∫∞
−∞ x2x1f Xt2 ,Xt1 (x2, x1 ) dx 2dx 1

(2.51)

10This content is available online at <http://cnx.org/content/m10236/2.13/>.
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RX (t2, t1) =
∫∞
−∞

∫∞
−∞ x2x1f Xt2−t1 ,X0 (x2, x1 ) dx 2dx 1

= RX (t2 − t1, 0)
(2.52)

If RX (t2, t1) depends on t2 − t1 only, then we will represent the autocorrelation with only one variable
τ = t2 − t1

RX (τ) = RX (t2 − t1)

= RX (t2, t1)
(2.53)

Properties

1. RX (0) ≥ 0
2. RX (τ) = RX (−τ)
3. |RX (τ) | ≤ RX (0)

Example 2.7
Xt = cos (2πf0t+ Θ (ω)) and Θ is uniformly distributed between 0 and 2π. The mean function

µX (t) = E [Xt]

= E [cos (2πf0t+ Θ)]

=
∫ 2π

0
cos (2πf0t+ θ) 1

2πdθ

= 0

(2.54)

The autocorrelation function

RX (t+ τ, t) = E
[
Xt+τXt

]
= E [cos (2πf0 (t+ τ) + Θ) cos (2πf0t+ Θ)]

= 1/2E [cos (2πf0τ)] + 1/2E [cos (2πf0 (2t+ τ) + 2Θ)]

= 1/2cos (2πf0τ) + 1/2
∫ 2π

0
cos (2πf0 (2t+ τ) + 2θ) 1

2πdθ

= 1/2cos (2πf0τ)

(2.55)

Not a function of t since the second term in the right hand side of the equality in (2.55) is zero.

Example 2.8
Toss a fair coin every T seconds. Since Xt is a discrete valued random process, the statistical
characteristics can be captured by the pmf and the mean function is written as

µX (t) = E [Xt]

= 1/2×−1 + 1/2× 1

= 0

(2.56)

RX (t2, t1) =
∑
kk

∑
ll xkxlp Xt2 ,Xt1 (xk, xl )

= 1× 1× 1/2− 1×−1× 1/2

= 1

(2.57)
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when nT ≤ t1 < (n+ 1)T and nT ≤ t2 < (n+ 1)T

RX (t2, t1) = 1× 1× 1/4− 1×−1× 1/4− 1× 1× 1/4 + 1×−1× 1/4

= 0
(2.58)

when nT ≤ t1 < (n+ 1)T and mT ≤ t2 < (m+ 1)T with n 6= m

RX (t2, t1) =

 1 if (nT ≤ t1 < (n+ 1)T ) ∧ (nT ≤ t2 < (n+ 1)T )

0 otherwise
(2.59)

A function of t1 and t2.

De�nition 2.9: Wide Sense Stationary
A process is said to be wide sense stationary if µX is constant and RX (t2, t1) is only a function of
t2 − t1.
Rule 2.2:
If Xt is strictly stationary, then it is wide sense stationary. The converse is not necessarily true.

De�nition 2.10: Autocovariance
Autocovariance of a random process is de�ned as

CX (t2, t1) = E
[
(Xt2 − µX (t2))Xt1 − µX (t1)

]
= RX (t2, t1)− µX (t2)µX (t1)

(2.60)

The variance of Xt is Var (Xt) = CX (t, t)
Two processes de�ned on one experiment (Figure 2.19).

Figure 2.19

De�nition 2.11: Crosscorrelation
The crosscorrelation function of a pair of random processes is de�ned as

RXY (t2, t1) = E
[
Xt2Yt1

]
=

∫∞
−∞

∫∞
−∞ xyf Xt2 ,Yt1 (x, y ) dxdy

(2.61)

CXY (t2, t1) = RXY (t2, t1)− µX (t2)µY (t1) (2.62)

De�nition 2.12: Jointly Wide Sense Stationary
The random processes Xt and Yt are said to be jointly wide sense stationary if RXY (t2, t1) is a
function of t2 − t1 only and µX (t) and µY (t) are constant.
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2.8 Gaussian Processes11

2.8.1 Gaussian Random Processes

De�nition 2.13: Gaussian process
A process with mean µX (t) and covariance function CX (t2, t1) is said to be a Gaussian process

if any X = (Xt1 , Xt2 , . . . , XtN )T formed by any sampling of the process is a Gaussian random
vector, that is,

fX (x) =
1

(2π)
N
2 (detΣX)

1
2
e−( 1

2 (x−µX)TΣX
−1(x−µX)) (2.63)

for all x ∈ Rn where

µX =


µX (t1)

...

µX (tN )


and

ΣX =


CX (t1, t1) . . . CX (t1, tN )

...
. . .

CX (tN , t1) . . . CX (tN , tN )


. The complete statistical properties of Xt can be obtained from the second-order statistics.

Properties

1. If a Gaussian process is WSS, then it is strictly stationary.
2. If two Gaussian processes are uncorrelated, then they are also statistically independent.
3. Any linear processing of a Gaussian process results in a Gaussian process.

Example 2.9
X and Y are Gaussian and zero mean and independent. Z = X + Y is also Gaussian.

φX (u) =
−

eiuX

= e
−
“
u2
2 σ

2
X

” (2.64)

for all u ∈ R

φZ (u) =
−

eiu(X+Y )

= e
−
“
u2
2 σ

2
X

”
e
−
“
u2
2 σ

2
Y

”
= e

−
“
u2
2 (σ2

X+σ2
Y )
” (2.65)

therefore Z is also Gaussian.

11This content is available online at <http://cnx.org/content/m10238/2.7/>.
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2.9 White and Coloured Processes12

2.9.1 White Noise

If we have a zero-mean Wide Sense Stationary process X, it is a White Noise Process if its ACF is a
delta function at τ = 0, i.e. it is of the form:

rXX (τ) = PXδ (τ) (2.66)

where PX is a constant.
The PSD of X is then given by

SX (ω) =
∫
PXδ (τ) e−(iωτ)dτ

= PXe
−(iω0)

= PX

(2.67)

Hence X is white, since it contains equal power at all frequencies, as in white light.
PX is the PSD of X at all frequencies.
But:

Power of X = 1
2π

∫∞
−∞ SX (ω) dω

= ∞
(2.68)

so the White Noise Process is unrealizable in practice, because of its in�nite bandwidth.
However, it is very useful as a conceptual entity and as an approximation to 'nearly white' processes

which have �nite bandwidth, but which are 'white' over all frequencies of practical interest. For 'nearly
white' processes, rXX (τ) is a narrow pulse of non-zero width, and SX (ω) is �at from zero up to some
relatively high cuto� frequency and then decays to zero above that.

2.9.2 Strict Whiteness and i.i.d. Processes

Usually the above concept of whiteness is su�cient, but a much stronger de�nition is as follows:
Pick a set of times {t1, t2, . . . , tN} to sample X (t).
If, for any choice of {t1, t2, . . . , tN} with N �nite, the random variables X (t1), X (t2), . . . X (tN ) are

jointly independent, i.e. their joint pdf is given by

fX(t1),X(t2), ... X(tN ) (x1, x2, . . . , xN ) =
N∏
i=1

fX(ti) (xi) (2.69)

and the marginal pdfs are identical, i.e.

fX(t1) = fX(t2)

= . . .

= fX(tN )

= fX

(2.70)

then the process is termed Independent and Identically Distributed (i.i.d).
If, in addition, fX is a pdf with zero mean, we have a Strictly White Noise Process.
An i.i.d. process is 'white' because the variables X (ti) and X (tj) are jointly independent, even when

separated by an in�nitesimally small interval between ti and tj .

12This content is available online at <http://cnx.org/content/m11105/2.4/>.
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2.9.3 Additive White Gaussian Noise (AWGN)

In many systems the concept of Additive White Gaussian Noise (AWGN) is used. This simply means
a process which has a Gaussian pdf, a white PSD, and is linearly added to whatever signal we are analysing.

Note that although 'white' and Gaussian' often go together, this is not necessary (especially for 'nearly
white' processes).

E.g. a very high speed random bit stream has an ACF which is approximately a delta function, and
hence is a nearly white process, but its pdf is clearly not Gaussian - it is a pair of delta functions at + (V )
and −V , the two voltage levels of the bit stream.

Conversely a nearly white Gaussian process which has been passed through a lowpass �lter (see next
section) will still have a Gaussian pdf (as it is a summation of Gaussians) but will no longer be white.

2.9.4 Coloured Processes

A random process whose PSD is not white or nearly white, is often known as a coloured noise process.
We may obtain coloured noise Y (t) with PSD SY (ω) simply by passing white (or nearly white) noise

X (t) with PSD PX through a �lter with frequency response H (ω), such that from this equation13 from our
discussion of Spectral Properties of Random Signals.

SY (ω) = SX (ω) (|H (ω) |)2

= PX(|H (ω) |)2
(2.71)

Hence if we design the �lter such that

|H (ω) | =

√
SY (ω)
PX

(2.72)

then Y (t) will have the required coloured PSD.
For this to work, SY (ω) need only be constant (white) over the passband of the �lter, so a nearly white

process which satis�es this criterion is quite satisfactory and realizable.
Using this equation14 from our discussion of Spectral Properties of Random Signals and (2.66), the ACF

of the coloured noise is given by

rY Y (τ) = rXX (τ) ∗ h (−τ) ∗ h (τ)

= PXδ (τ) ∗ h (−τ) ∗ h (τ)

= PXh (−τ) ∗ h (τ)

(2.73)

where h (τ) is the impulse response of the �lter.
This Figure15 from previous discussion shows two examples of coloured noise, although the upper wave-

form is more 'nearly white' than the lower one, as can be seen in part c of this �gure16 from previous
discussion in which the upper PSD is �atter than the lower PSD. In these cases, the coloured waveforms
were produced by passing uncorrelated random noise samples (white up to half the sampling frequency)
through half-sine �lters (as in this equation17 from our discussion of Random Signals) of length Tb = 10 and
50 samples respectively.

13"Spectral Properties of Random Signals", (11) <http://cnx.org/content/m11104/latest/#eq27>
14"Spectral Properties of Random Signals", (9) <http://cnx.org/content/m11104/latest/#eq25>
15"Spectral Properties of Random Signals", Figure 1 <http://cnx.org/content/m11104/latest/#�gure1>
16"Spectral Properties of Random Signals", Figure 1(c) <http://cnx.org/content/m11104/latest/#�gure1c>
17"Random Signals", (1) <http://cnx.org/content/m10989/latest/#eq9>
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2.10 Transmission of Stationary Process Through a Linear Filter18

Integration

Z (ω) =
∫ b

a

Xt (ω) dt (2.74)

Linear Processing

Yt =
∫ ∞
−∞

h (t, τ)Xτdτ (2.75)

Di�erentiation

Xt
′ =

d

dt
(Xt) (2.76)

Properties

1.
−
Z=

−∫ b
a
Xt (ω) dt=

∫ b
a
µX (t) dt

2.
−
Z2=

−∫ b
a
Xt2dt 2

∫ b
a
Xt1dt 1=

∫ b
a

∫ b
a
RX (t2, t1) dt 1dt 2

Figure 2.20

µY (t) =
−∫∞

−∞ h (t, τ)Xτdτ

=
∫∞
−∞ h (t, τ)µX (τ) dτ

(2.77)

If Xt is wide sense stationary and the linear system is time invariant

µY (t) =
∫∞
−∞ h (t− τ)µXdτ

= µX
∫∞
−∞ h (t′) dt′

= µY

(2.78)

RY X (t2, t1) =
−

Yt2Xt1

=
−∫∞

−∞ h (t2 − τ)XτdτXt1

=
∫∞
−∞ h (t2 − τ)RX (τ − t1) dτ

(2.79)

18This content is available online at <http://cnx.org/content/m10237/2.10/>.
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RY X (t2, t1) =
∫∞
−∞ h (t2 − t1 − τ ′)RX (τ ′) dτ ′

= h ∗RX (t2 − t1)
(2.80)

where τ ′ = τ − t1.

RY (t2, t1) =
−

Yt2Yt1

=
−

Yt2
∫∞
−∞ h (t1, τ)Xτdτ

=
∫∞
−∞ h (t1, τ)RY X (t2, τ) dτ

=
∫∞
−∞ h (t1 − τ)RY X (t2 − τ) dτ

(2.81)

RY (t2, t1) =
∫∞
−∞ h (τ ′ − (t2 − t1))RY X (τ ′) dτ ′

= RY (t2 − t1)

=
∼
h ∗RY X (t2, t1)

(2.82)

where τ ′ = t2 − τ and
∼
h (τ) = h (−τ) for all τ ∈ R. Yt is WSS if Xt is WSS and the linear system is

time-invariant.

Figure 2.21

Example 2.10
Xt is a wide sense stationary process with µX = 0, and RX (τ) = N0

2 δ (τ). Consider the random
process going through a �lter with impulse response h (t) = e−(at)u (t). The output process is
denoted by Yt. µY (t) = 0 for all t.

RY (τ) = N0
2

∫∞
−∞ h (α)h (α− τ) dα

= N0
2
e−(a|τ|)

2a

(2.83)

Xt is called a white process. Yt is a Markov process.

De�nition 2.14: Power Spectral Density
The power spectral density function of a wide sense stationary (WSS) process Xt is de�ned to be
the Fourier transform of the autocorrelation function of Xt.

SX (f) =
∫ ∞
−∞

RX (τ) e−(i2πfτ)dτ (2.84)

if Xt is WSS with autocorrelation function RX (τ).

Properties
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1. SX (f) = SX (−f) since RX is even and real.
2. Var (Xt) = RX (0) =

∫∞
−∞ SX (f) df

3. SX (f) is real and nonnegative SX (f) ≥ 0 for all f .

If Yt =
∫∞
−∞ h (t− τ)Xτdτ then

SY (f) = F (RY (τ))

= F
(
h∗
∼
h ∗RX (τ)

)
= H (f)

∼
H (f)SX (f)

= (|H (f) |)2
SX (f)

(2.85)

since
∼
H (f) =

∫∞
−∞

∼
h (t) e−(i2πft)dt = H (f)

Example 2.11
Xt is a white process and h (t) = e−(at)u (t).

H (f) =
1

a+ i2πf
(2.86)

SY (f) =
N0
2

a2 + 4π2f2
(2.87)
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Chapter 3

Chapter 2: Source Coding

3.1 Information Theory and Coding1

In the previous chapters, we considered the problem of digital transmission over di�erent channels. Infor-
mation sources are not often digital, and in fact, many sources are analog. Although many channels are also
analog, it is still more e�cient to convert analog sources into digital data and transmit over analog channels
using digital transmission techniques. There are two reasons why digital transmission could be more e�cient
and more reliable than analog transmission:

1. Analog sources could be compressed to digital form e�ciently.
2. Digital data can be transmitted over noisy channels reliably.

There are several key questions that need to be addressed:

1. How can one model information?
2. How can one quantify information?
3. If information can be measured, does its information quantity relate to how much it can be compressed?
4. Is it possible to determine if a particular channel can handle transmission of a source with a particular

information quantity?

Figure 3.1

Example 3.1
The information content of the following sentences: "Hello, hello, hello." and "There is an exam
today." are not the same. Clearly the second one carries more information. The �rst one can be
compressed to "Hello" without much loss of information.

In other modules, we will quantify information and �nd e�cient representation of information (Entropy (Sec-
tion 3.2)). We will also quantify how much (Section 6.1) information can be transmitted through channels,
reliably. Channel coding (Section 6.5) can be used to reduce information rate and increase reliability.

1This content is available online at <http://cnx.org/content/m10162/2.10/>.
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3.2 Entropy2

Information sources take very di�erent forms. Since the information is not known to the destination, it is
then best modeled as a random process, discrete-time or continuous time.

Here are a few examples:

• Digital data source (e.g., a text) can be modeled as a discrete-time and discrete valued random process
X1, X2, . . ., where Xi ∈ {A,B,C,D,E, . . . } with a particular pX1 (x), pX2 (x), . . ., and a speci�c
pX1X2 , pX2X3 , . . ., and pX1X2X3 , pX2X3X4 , . . ., etc.

• Video signals can be modeled as a continuous time random process. The power spectral density is
bandlimited to around 5 MHz (the value depends on the standards used to raster the frames of image).

• Audio signals can be modeled as a continuous-time random process. It has been demonstrated that
the power spectral density of speech signals is bandlimited between 300 Hz and 3400 Hz. For example,
the speech signal can be modeled as a Gaussian process with the shown (Figure 3.2) power spectral
density over a small observation period.

Figure 3.2

These analog information signals are bandlimited. Therefore, if sampled faster than the Nyquist rate,
they can be reconstructed from their sample values.

Example 3.2
A speech signal with bandwidth of 3100 Hz can be sampled at the rate of 6.2 kHz. If the samples
are quantized with a 8 level quantizer then the speech signal can be represented with a binary
sequence with the rate of

6.2× 103log28 = 18600 bits
sample

samples
sec

= 18.6kbits
sec

(3.1)

2This content is available online at <http://cnx.org/content/m10164/2.16/>.
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Figure 3.3

The sampled real values can be quantized to create a discrete-time discrete-valued random
process. Since any bandlimited analog information signal can be converted to a sequence of discrete
random variables, we will continue the discussion only for discrete random variables.

Example 3.3
The random variable x takes the value of 0 with probability 0.9 and the value of 1 with probability
0.1. The statement that x = 1 carries more information than the statement that x = 0. The reason
is that x is expected to be 0, therefore, knowing that x = 1 is more surprising news!! An intuitive
de�nition of information measure should be larger when the probability is small.

Example 3.4
The information content in the statement about the temperature and pollution level on July 15th
in Chicago should be the sum of the information that July 15th in Chicago was hot and highly
polluted since pollution and temperature could be independent.

I (hot,high) = I (hot) + I (high) (3.2)

An intuitive and meaningful measure of information should have the following properties:

1. Self information should decrease with increasing probability.
2. Self information of two independent events should be their sum.
3. Self information should be a continuous function of the probability.

The only function satisfying the above conditions is the -log of the probability.

De�nition 3.1: Entropy
1. The entropy (average self information) of a discrete random variable X is a function of its
probability mass function and is de�ned as

H (X) = −
N∑
i=1

p X (xi ) logp X (xi ) (3.3)

where N is the number of possible values of X and p X (xi ) = Pr [X = xi]. If log is base 2 then
the unit of entropy is bits. Entropy is a measure of uncertainty in a random variable and a measure
of information it can reveal.
2. A more basic explanation of entropy is provided in another module3.

Example 3.5
If a source produces binary information {0, 1} with probabilities p and 1− p. The entropy of the
source is

H (X) = (− (plog2p))− (1− p) log2 (1− p) (3.4)

3"Entropy" <http://cnx.org/content/m0070/latest/>
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If p = 0 then H (X) = 0, if p = 1 then H (X) = 0, if p = 1/2 then H (X) = 1 bits. The source has
its largest entropy if p = 1/2 and the source provides no new information if p = 0 or p = 1.

Figure 3.4

Example 3.6
An analog source is modeled as a continuous-time random process with power spectral density
bandlimited to the band between 0 and 4000 Hz. The signal is sampled at the Nyquist rate. The
sequence of random variables, as a result of sampling, are assumed to be independent. The samples
are quantized to 5 levels {−2,−1, 0, 1, 2}. The probability of the samples taking the quantized
values are

{
1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
16

}
, respectively. The entropy of the random variables are

H (X) =
(
−
(

1
2 log2

1
2

))
− 1

4 log2
1
4 −

1
8 log2

1
8 −

1
16 log2

1
16 −

1
16 log2

1
16

= 1
2 log22 + 1

4 log24 + 1
8 log28 + 1

16 log216 + 1
16 log216

= 1
2 + 1

2 + 3
8 + 4

8

= 15
8

bits
sample

(3.5)

There are 8000 samples per second. Therefore, the source produces 8000 × 15
8 = 15000bits

sec of
information.

De�nition 3.2: Joint Entropy
The joint entropy of two discrete random variables (X, Y ) is de�ned by

H (X,Y ) = −
∑
ii

∑
jj

p X,Y (xi, yj ) logp X,Y (xi, yj ) (3.6)

The joint entropy for a random vector X = (X1, X2, . . . , Xn)T is de�ned as

H (X) = −
∑
x 1x1

∑
x 2x2

· · ·
∑

x nxn

p X (x1, x2, . . . , xn ) logp X (x1, x2, . . . , xn ) (3.7)

De�nition 3.3: Conditional Entropy
The conditional entropy of the random variable X given the random variable Y is de�ned by

H (X|Y ) = −
∑
ii

∑
jj

p X,Y (xi, yj ) logpX|Y (xi|yj) (3.8)
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It is easy to show that

H (X) = H (X1) +H (X2|X1) + · · ·+H (Xn|X1X2 . . . Xn−1) (3.9)

and

H (X,Y ) = H (Y ) +H (X|Y )

= H (X) +H (Y |X)
(3.10)

If X1, X2, . . ., Xn are mutually independent it is easy to show that

H (X) =
n∑
i=1

H (Xi) (3.11)

De�nition 3.4: Entropy Rate
The entropy rate of a stationary discrete-time random process is de�ned by

H = limit
n→∞

H (Xn|X1X2 . . . Xn) (3.12)

The limit exists and is equal to

H = limit
n→∞

1
n
H (X1, X2, . . . , Xn) (3.13)

The entropy rate is a measure of the uncertainty of information content per output symbol of the
source.

Entropy is closely tied to source coding (Section 3.3). The extent to which a source can be compressed
is related to its entropy. In 1948, Claude E. Shannon introduced a theorem which related the entropy to the
number of bits per second required to represent a source without much loss.

3.3 Source Coding4

As mentioned earlier, how much a source can be compressed should be related to its entropy (Section 3.2).
In 1948, Claude E. Shannon introduced three theorems and developed very rigorous mathematics for digital
communications. In one of the three theorems, Shannon relates entropy to the minimum number of bits per
second required to represent a source without much loss (or distortion).

Consider a source that is modeled by a discrete-time and discrete-valued random process X1, X2, . . .,
Xn, . . . where xi ∈ {a1, a2, . . . , aN} and de�ne pXi (xi = aj) = pj for j = 1, 2, . . . , N , where it is assumed
that X1, X2,. . . Xn are mutually independent and identically distributed.

Consider a sequence of length n

X =


X1

X2

...

Xn

 (3.14)

The symbol a1 can occur with probability p1. Therefore, in a sequence of length n, on the average, a1 will
appear np1 times with high probabilities if n is very large.

Therefore,
P (X = x) = pX1 (x1) pX2 (x2) . . . pXn (xn) (3.15)

4This content is available online at <http://cnx.org/content/m10175/2.10/>.
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P (X = x) ' p1
np1p2

np2 . . . pN
npN =

N∏
i=1

pi
npi (3.16)

where pi = P (Xj = ai) for all j and for all i.
A typical sequence X may look like

X =



a2

...

a1

aN

a2

a5

...

a1

...

aN

a6



(3.17)

where ai appears npi times with large probability. This is referred to as a typical sequence. The probability
of X being a typical sequence is

P (X = x) '
∏N
i=1 pi

npi =
∏N
i=1

(
2log2pi

)npi
=

∏N
i=1 2npilog2pi

= 2n
PN
i=1 pilog2pi

= 2−(nH(X))

(3.18)

where H (X) is the entropy of the random variables X1, X2,. . ., Xn.
For large n, almost all the output sequences of length n of the source are equally probably with

probability ' 2−(nH(X)). These are typical sequences. The probability of nontypical sequences are neg-
ligible. There are Nn di�erent sequences of length n with alphabet of size N . The probability of typical
sequences is almost 1.

# of typical seq.∑
k=1

2−(nH(X)) = 1 (3.19)
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Figure 3.5

Example 3.7
Consider a source with alphabet {A,B,C,D} with probabilities { 1

2 ,
1
4 ,

1
8 ,

1
8}. Assume X1, X2,. . .,

X8 is an independent and identically distributed sequence with Xi ∈ {A,B,C,D} with the above
probabilities.

H (X) =
(
−
(

1
2 log2

1
2

))
− 1

4 log2
1
4 −

1
8 log2

1
8 −

1
8 log2

1
8

= 1
2 + 2

4 + 3
8 + 3

8

= 4+4+6
8

= 14
8

(3.20)

The number of typical sequences of length 8

28× 14
8 = 214 (3.21)

The number of nontypical sequences 48 − 214 = 216 − 214 = 214 (4− 1) = 3× 214

Examples of typical sequences include those with A appearing 8 × 1
2 = 4 times, B appearing

8× 1
4 = 2 times, etc. {A,D,B,B,A,A,C,A}, {A,A,A,A,C,D,B,B} and much more.
Examples of nontypical sequences of length 8: {D,D,B,C,C,A,B,D}, {C,C,C,C,C,B,C,C} and

much more. Indeed, these de�nitions and arguments are valid when n is very large. The probability
of a source output to be in the set of typical sequences is 1 when n → ∞. The probability of a
source output to be in the set of nontypical sequences approaches 0 as n→∞.

The essence of source coding or data compression is that as n→∞, nontypical sequences never appear as
the output of the source. Therefore, one only needs to be able to represent typical sequences as binary codes
and ignore nontypical sequences. Since there are only 2nH(X) typical sequences of length n, it takes nH (X)
bits to represent them on the average. On the average it takes H (X) bits per source output to represent a
simple source that produces independent and identically distributed outputs.

Theorem 3.1: Shannon's Source-Coding
A source that produced independent and identically distributed random variables with entropy H
can be encoded with arbitrarily small error probability at any rate R in bits per source output if
R ≥ H. Conversely, if R < H, the error probability will be bounded away from zero, independent
of the complexity of coder and decoder.
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The source coding theorem proves existence of source coding techniques that achieve rates close to the
entropy but does not provide any algorithms or ways to construct such codes.

If the source is not i.i.d. (independent and identically distributed), but it is stationary with mem-
ory, then a similar theorem applies with the entropy H (X) replaced with the entropy rate H =
limit
n→∞

H (Xn|X1X2 . . . Xn−1)
In the case of a source with memory, the more the source produces outputs the more one knows about

the source and the more one can compress.

Example 3.8
The English language has 26 letters, with space it becomes an alphabet of size 27. If modeled as
a memoryless source (no dependency between letters in a word) then the entropy is H (X) = 4.03
bits/letter.

If the dependency between letters in a text is captured in a model the entropy rate can be
derived to be H = 1.3 bits/letter. Note that a non-information theoretic representation of a text
may require 5 bits/letter since 25 is the closest power of 2 to 27. Shannon's results indicate that
there may be a compression algorithm with the rate of 1.3 bits/letter.

Although Shannon's results are not constructive, there are a number of source coding algorithms for discrete
time discrete valued sources that come close to Shannon's bound. One such algorithm is the Hu�man source
coding algorithm (Section 3.4). Another is the Lempel and Ziv algorithm.

Hu�man codes and Lempel and Ziv apply to compression problems where the source produces discrete
time and discrete valued outputs. For cases where the source is analog there are powerful compression
algorithms that specify all the steps from sampling, quantizations, and binary representation. These are
referred to as waveform coders. JPEG, MPEG, vocoders are a few examples for image, video, and voice,
respectively.

3.4 Hu�man Coding5

One particular source coding (Section 3.3) algorithm is the Hu�man encoding algorithm. It is a source
coding algorithm which approaches, and sometimes achieves, Shannon's bound for source compression. A
brief discussion of the algorithm is also given in another module6.

3.4.1 Hu�man encoding algorithm

1. Sort source outputs in decreasing order of their probabilities
2. Merge the two least-probable outputs into a single output whose probability is the sum of the corre-

sponding probabilities.
3. If the number of remaining outputs is more than 2, then go to step 1.
4. Arbitrarily assign 0 and 1 as codewords for the two remaining outputs.
5. If an output is the result of the merger of two outputs in a preceding step, append the current codeword

with a 0 and a 1 to obtain the codeword the the preceding outputs and repeat step 5. If no output is
preceded by another output in a preceding step, then stop.

Example 3.9
X ∈ {A,B,C,D} with probabilities { 1

2 ,
1
4 ,

1
8 ,

1
8}

5This content is available online at <http://cnx.org/content/m10176/2.10/>.
6"Compression and the Hu�man Code" <http://cnx.org/content/m0092/latest/>
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Figure 3.6

Average length = 1
21 + 1

42 + 1
83 + 1

83 = 14
8 . As you may recall, the entropy of the source was

also H (X) = 14
8 . In this case, the Hu�man code achieves the lower bound of 14

8
bits

output .

In general, we can de�ne average code length as

−
`=

∑
x∈X

p X (x ) ` (x) (3.22)

where X is the set of possible values of x.
It is not very hard to show that

H (X) ≥
−
`> H (X) + 1 (3.23)

For compressing single source output at a time, Hu�man codes provide nearly optimum code lengths.
The drawbacks of Hu�man coding

1. Codes are variable length.
2. The algorithm requires the knowledge of the probabilities, p X (x ) for all x ∈ X.

Another powerful source coder that does not have the above shortcomings is Lempel and Ziv.
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Chapter 4

Chapter 3: Communication over AWGN

Channels

4.1 Data Transmission and Reception1

We will develop the idea of data transmission by �rst considering simple channels. In additional modules,
we will consider more practical channels; baseband channels with bandwidth constraints and passband
channels.

Simple additive white Gaussian channels

Figure 4.1: Xt carries data, Nt is a white Gaussian random process.

The concept of using di�erent types of modulation for transmission of data is introduced in the module
Signalling (Section 4.2). The problem of demodulation and detection of signals is discussed in Demodulation
and Detection (Section 4.4).

4.2 Signalling2

Example 4.1
Data symbols are "1" or "0" and data rate is 1

T Hertz.

1This content is available online at <http://cnx.org/content/m10115/2.9/>.
2This content is available online at <http://cnx.org/content/m10116/2.11/>.
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Pulse amplitude modulation (PAM)

Figure 4.2

Pulse position modulation

Figure 4.3

Example 4.2: Example
Data symbols are "1" or "0" and the data rate is 2

T Hertz.
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Figure 4.4

This strategy is an alternative to PAM with half the period, T2 .
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Figure 4.5

Relevant measures are energy of modulated signals

Em = ∀m ∈ {1, 2, . . . ,M} :

(∫ T

0

sm
2 (t) dt

)
(4.1)

and how di�erent they are in terms of inner products.

< sm, sn >=
∫ T

0

sm (t) sn (t)dt (4.2)

for m ∈ {1, 2, . . . ,M} and n ∈ {1, 2, . . . ,M}.
De�nition 4.1: antipodal
Signals s1 (t) and s2 (t) are antipodal if ∀t, t ∈ [0, T ] : (s2 (t) = −s1 (t))
De�nition 4.2: orthogonal
Signals s1 (t), s2 (t),. . ., sM (t) are orthogonal if < sm, sn >= 0 for m 6= n.

De�nition 4.3: biorthogonal
Signals s1 (t), s2 (t),. . ., sM (t) are biorthogonal if s1 (t),. . ., sM

2
(t) are orthogonal and sm (t) =

−sM
2 +m (t) for some m ∈

{
1, 2, . . . , M2

}
.
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It is quite intuitive to expect that the smaller (the more negative) the inner products, < sm, sn > for all
m 6= n, the better the signal set.

De�nition 4.4: Simplex signals
Let {s1 (t) , s2 (t) , . . . , sM (t)} be a set of orthogonal signals with equal energy. The signals s̃1 (t),. . .,
˜sM (t) are simplex signals if

s̃m (t) = sm (t)− 1
M

M∑
k=1

sk (t) (4.3)

If the energy of orthogonal signals is denoted by

∀m,m ∈ {1, 2, ...,M} :

(
Es =

∫ T

0

sm
2 (t) dt

)
(4.4)

then the energy of simplex signals

Es̃ =
(

1− 1
M

)
Es (4.5)

and

∀m 6= n :
(
< s̃m, s̃n >=

−1
M − 1

Es̃

)
(4.6)

It is conjectured that among all possible M -ary signals with equal energy, the simplex signal set results
in the smallest probability of error when used to transmit information through an additive white Gaussian
noise channel.

The geometric representation of signals (Section 4.3) can provide a compact description of signals and
can simplify performance analysis of communication systems using the signals.

Once signals have been modulated, the receiver must detect and demodulate (Section 4.4) the signals
despite interference and noise and decide which of the set of possible transmitted signals was sent.

4.3 Geometric Representation of Modulation Signals3

Geometric representation of signals can provide a compact characterization of signals and can simplify
analysis of their performance as modulation signals.

Orthonormal bases are essential in geometry. Let {s1 (t) , s2 (t) , . . . , sM (t)} be a set of signals.
De�ne ψ1 (t) = s1(t)√

E1
where E1 =

∫ T
0
s1

2 (t) dt.

De�ne s21 =< s2, ψ1 >=
∫ T

0
s2 (t)ψ1 (t)dt and ψ2 (t) = 1r

^
E2

(s2 (t)− s21ψ1) where
^
E2=∫ T

0
(s2 (t)− s21ψ1 (t))2

dt
In general

ψk (t) =
1√
^
Ek

sk (t)−
k−1∑
j=1

skjψj (t)

 (4.7)

where
^
Ek=

∫ T
0

(
sk (t)−

∑k−1
j=1 skjψj (t)

)2

dt.

The process continues until all of the M signals are exhausted. The results are N orthogonal signals
with unit energy, {ψ1 (t) , ψ2 (t) , . . . , ψN (t)} where N ≤ M . If the signals {s1 (t) , . . . , sM (t)} are linearly
independent, then N = M .

3This content is available online at <http://cnx.org/content/m10035/2.13/>.
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The M signals can be represented as

sm (t) =
N∑
n=1

smnψn (t) (4.8)

with m ∈ {1, 2, . . . ,M} where smn =< sm, ψn > and Em =
∑N
n=1 smn

2. The signals can be represented by

sm =


sm1

sm2

...

smN


Example 4.3

Figure 4.6

ψ1 (t) =
s1 (t)√
A2T

(4.9)

s11 = A
√
T (4.10)

s21 = −
(
A
√
T
)

(4.11)

ψ2 (t) = (s2 (t)− s21ψ1 (t)) 1r
^
E2

=
(
−A+ A

√
T√
T

)
1r
^
E2

= 0

(4.12)
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Figure 4.7

Dimension of the signal set is 1 with E1 = s11
2 and E2 = s21

2.

Example 4.4

Figure 4.8

ψm (t) = sm(t)√
Es

where Es =
∫ T

0
sm

2 (t) dt = A2T
4

s1 =


√
Es

0

0

0

, s2 =


0
√
Es

0

0

, s3 =


0

0
√
Es

0

, and s4 =


0

0

0
√
Es



∀m n :

dmn = |sm − sn| =

√√√√ N∑
j=1

(smj − snj)
2 =

√
2Es

 (4.13)

is the Euclidean distance between signals.

Example 4.5
Set of 4 equal energy biorthogonal signals. s1 (t) = s (t), s2 (t) = s⊥ (t), s3 (t) = −s (t), s4 (t) =
−s⊥ (t).

The orthonormal basis ψ1 (t) = s(t)√
Es
, ψ2 (t) = s⊥(t)√

Es
where Es =

∫ T
0
sm

2 (t) dt

s1 =

 √Es
0

, s2 =

 0
√
Es

, s3 =

 −√Es
0

, s4 =

 0

−
√
Es

. The four signals can
be geometrically represented using the 4-vector of projection coe�cients s1, s2, s3, and s4 as a set
of constellation points.
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Signal constellation

Figure 4.9

d21 = |s2 − s1|
=
√

2Es
(4.14)

d12 = d23

= d34

= d14

(4.15)

d13 = |s1 − s3|
= 2

√
Es

(4.16)

d13 = d24 (4.17)

Minimum distance dmin =
√

2Es

4.4 Demodulation and Detection4

Consider the problem where signal set, {s1, s2, . . . , sM}, for t ∈ [0, T ] is used to transmit log2M bits. The
modulated signal Xt could be {s1, s2, . . . , sM} during the interval 0 ≤ t ≤ T .

4This content is available online at <http://cnx.org/content/m10054/2.14/>.
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Figure 4.10: rt = Xt + Nt = sm (t) + Nt for 0 ≤ t ≤ T for some m ∈ {1, 2, . . . , M}.

Recall sm (t) =
∑N
n=1 smnψn (t) for m ∈ {1, 2, . . . ,M} the signals are decomposed into a set of orthonor-

mal signals, perfectly.
Noise process can also be decomposed

Nt =
N∑
n=1

ηnψn (t) + Ñt (4.18)

where ηn =
∫ T

0
Ntψn (t) dt is the projection onto the nth basis signal, Ñt is the left over noise.

The problem of demodulation and detection is to observe rt for 0 ≤ t ≤ T and decide which one of
the M signals were transmitted. Demodulation is covered here (Section 4.5). A discussion about detection
can be found here (Section 4.6).

4.5 Demodulation5

4.5.1 Demodulation

Convert the continuous time received signal into a vector without loss of information (or performance).

rt = sm (t) +Nt (4.19)

rt =
N∑
n=1

smnψn (t) +
N∑
n=1

ηnψn (t) + Ñt (4.20)

rt =
N∑
n=1

(smn + ηn)ψn (t) + Ñt (4.21)

rt =
N∑
n=1

rnψn (t) + Ñt (4.22)

Proposition 4.1:
The noise projection coe�cients ηn's are zero mean, Gaussian random variables and are mutually
independent if Nt is a white Gaussian process.
Proof:

µη (n) = E [ηn]

= E
[∫ T

0
Ntψn (t) dt

] (4.23)

5This content is available online at <http://cnx.org/content/m10141/2.13/>.
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µη (n) =
∫ T

0
E [Nt]ψn (t) dt

= 0
(4.24)

E [ηkηn] = E
[∫ T

0
Ntψk (t) dt

∫ T
0
Nt′ψk (t′)dt ′

]
=

∫ T
0

∫ T
0
NtNt′ψk (t)ψn (t′) dtdt ′

(4.25)

E [ηkηn] =
∫ T

0

∫ T

0

RN (t− t′)ψk (t)ψndtdt ′ (4.26)

E [ηkηn] =
N0

2

∫ T

0

∫ T

0

δ (t− t′)ψk (t)ψn (t′)dtdt ′ (4.27)

E [ηkηn] = N0
2

∫ T
0
ψk (t)ψn (t)dt

= N0
2 δkn

=

 N0
2 if k = n

0 if k 6= n

(4.28)

ηk 's are uncorrelated and since they are Gaussian they are also independent. Therefore, ηk '
Gaussian

(
0, N0

2

)
and Rη (k, n) = N0

2 δkn

Proposition 4.2:
The rn's, the projection of the received signal rt onto the orthonormal bases ψn (t)'s, are indepen-
dent from the residual noise process Ñt.

The residual noise Ñt is irrelevant to the decision process on rt.
Proof:
Recall rn = smn + ηn, given sm (t) was transmitted. Therefore,

µr (n) = E [smn + ηn]

= smn
(4.29)

Var (rn) = Var (ηn)

= N0
2

(4.30)

The correlation between rn and Ñt

E
[
Ñtrn

]
= E

[(
Nt −

N∑
k=1

ηkψk (t)

)
smn + ηn

]
(4.31)

E
[
Ñtrn

]
= E

[
Nt −

N∑
k=1

ηkψk (t)

]
smn + E [ηkηn]−

N∑
k=1

E [ηkηn]ψk (t) (4.32)

E
[
Ñtrn

]
= E

[
Nt

∫ T

0

Nt′ψn (t′)dt ′

]
−

N∑
k=1

N0

2
δknψk (t) (4.33)

E
[
Ñtrn

]
=
∫ T

0

N0

2
δ (t− t′)ψn (t′) dt ′ − N0

2
ψn (t) (4.34)
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E
[
Ñtrn

]
= N0

2 ψn (t)− N0
2 ψn (t)

= 0
(4.35)

Since both Ñt and rn are Gaussian then Ñt and rn are also independent.

The conjecture is to ignore Ñt and extract information from


r1

r2

. . .

rN

. Knowing the vector r

we can reconstruct the relevant part of random process rt for 0 ≤ t ≤ T

rt = sm (t) +Nt

=
∑N
n=1 rnψn (t) + Ñt

(4.36)

Figure 4.11
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Figure 4.12

Once the received signal has been converted to a vector, the correct transmitted signal must be detected
based upon observations of the input vector. Detection is covered elsewhere (Section 4.6).

4.6 Detection by Correlation6

Demodulation and Detection

Figure 4.13

6This content is available online at <http://cnx.org/content/m10091/2.15/>.

Available for free at Connexions <http://cnx.org/content/col10474/1.7>



57

4.6.1 Detection

Decide which sm (t) from the set of {s1 (t) , . . . , sm (t)} signals was transmitted based on observing r =
r1

r2

...

rN

, the vector composed of demodulated (Section 4.5) received signal, that is, the vector of projection

of the received signal onto the N bases.

^
m= arg max

1≤m≤M
Pr [sm (t) was transmitted | r was observed] (4.37)

Note that

Pr [sm | r] , Pr [sm (t)was transmitted | r was observed] =
fr|smPr [sm]

fr
(4.38)

If Pr [sm was transmitted] = 1
M , that is information symbols are equally likely to be transmitted, then

arg max
1≤m≤M

Pr [sm | r] = arg max
1≤m≤M

fr|sm (4.39)

Since r (t) = sm (t)+Nt for 0 ≤ t ≤ T and for some m = {1, 2, . . . ,M} then r = sm+η where η =


η1

η2

...

ηN


and ηn's are Gaussian and independent.

∀r n, rn ∈ R :

fr|sm =
1(

2πN0
2

)N
2
e

−
PN
n=1 (rn−sm,n)2

2
N0
2

 (4.40)

^
m = arg max

1≤m≤M
fr|sm

= arg max
1≤m≤M

ln
(
fr|sm

)
= arg max

1≤m≤M

(
−
(
N
2 ln (πN0)

))
− 1

N0

∑N
n=1 (rn − sm,n)2

= arg min
1≤m≤M

∑N
n=1 (rn − sm,n)2

(4.41)

where D (r, sm) is the l2 distance between vectors r and sm de�ned as D (r, sm) ,
∑N
n=1 (rn − sm,n)2

^
m = arg min

1≤m≤M
D (r, sm)

= arg min
1≤m≤M

(‖ r ‖)2 − 2 < (r, sm) > +(‖ sm ‖)2
(4.42)

where ‖ r ‖ is the l2 norm of vector r de�ned as ‖ r ‖,
√∑N

n=1 (rn)2

^
m= arg max

1≤m≤M
2 < (r, sm) > −(‖ sm ‖)2

(4.43)

This type of receiver system is known as a correlation (or correlator-type) receiver. Examples of the use
of such a system are found here (Section 4.7). Another type of receiver involves linear, time-invariant �lters
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and is known as a matched �lter (Section 4.8) receiver. An analysis of the performance of a correlator-type
receiver using antipodal and orthogonal binary signals can be found in Performance Analysis7.

4.7 Examples of Correlation Detection8

The implementation and theory of correlator-type receivers can be found in Detection (Section 4.6).

Example 4.6

Figure 4.14

^
m= 2 since D (r, s1) > D (r, s2) or (‖ s1 ‖)2 = (‖ s2 ‖)2

and < r, s2 >>< r, s1 >.

Figure 4.15

7"Performance Analysis" <http://cnx.org/content/m10106/latest/>
8This content is available online at <http://cnx.org/content/m10149/2.10/>.
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Example 4.7
Data symbols "0" or "1" with equal probability. Modulator s1 (t) = s (t) for 0 ≤ t ≤ T and
s2 (t) = −s (t) for 0 ≤ t ≤ T .

Figure 4.16

ψ1 (t) = s(t)√
A2T

, s11 = A
√
T , and s21 = −

(
A
√
T
)

∀m,m = {1, 2} : (rt = sm (t) +Nt) (4.44)

Figure 4.17

r1 = A
√
T + η1 (4.45)

or
r1 = −

(
A
√
T
)

+ η1 (4.46)

η1 is Gaussian with zero mean and variance N0
2 .
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Figure 4.18

^
m= argmax

{
A
√
Tr1,−

(
A
√
Tr1

)}
, since A

√
T > 0 and Pr [s1] = Pr [s1] then the MAP

decision rule decides.
s1 (t) was transmitted if r1 ≥ 0
s2 (t) was transmitted if r1 < 0
An alternate demodulator:

(rt = sm (t) +Nt)⇒ (r = sm + η) (4.47)

4.8 Matched Filters9

Signal to Noise Ratio (SNR) at the output of the demodulator is a measure of the quality of the demod-
ulator.

SNR =
signal energy
noise energy

(4.48)

In the correlator described earlier, Es = (|sm|)2
and σηn

2 = N0
2 . Is it possible to design a demodulator

based on linear time-invariant �lters with maximum signal-to-noise ratio?

9This content is available online at <http://cnx.org/content/m10101/2.14/>.
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Figure 4.19

If sm (t) is the transmitted signal, then the output of the kth �lter is given as

yk (t) =
∫∞
−∞ rτhk (t− τ) dτ

=
∫∞
−∞ (sm (τ) +Nτ )hk (t− τ) dτ

=
∫∞
−∞ sm (τ)hk (t− τ) dτ +

∫∞
−∞Nτhk (t− τ) dτ

(4.49)

Sampling the output at time T yields

yk (T ) =
∫ ∞
−∞

sm (τ)hk (T − τ) dτ +
∫ ∞
−∞

Nτhk (T − τ) dτ (4.50)

The noise contribution:

νk =
∫ ∞
−∞

Nτhk (T − τ) dτ (4.51)

The expected value of the noise component is

E [νk] = E
[∫∞
−∞Nτhk (T − τ) dτ

]
= 0

(4.52)

The variance of the noise component is the second moment since the mean is zero and is given as

σ (νk)2 = E
[
νk

2
]

= E
[∫∞
−∞Nτhk (T − τ) dτ

∫∞
−∞Nτ 'hk (T − τ ')dτ '

] (4.53)

E
[
νk

2
]

=
∫∞
−∞

∫∞
−∞

N0
2 δ
(
τ − τ '

)
hk (T − τ)hk (T − τ ')dτdτ '

= N0
2

∫∞
−∞ (|hk (T − τ) |)2

dτ
(4.54)
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Signal Energy can be written as (∫ ∞
−∞

sm (τ)hk (T − τ) dτ
)2

(4.55)

and the signal-to-noise ratio (SNR) as

SNR =

(∫∞
−∞ sm (τ)hk (T − τ) dτ

)2

N0
2

∫∞
−∞ (|hk (T − τ) |)2

dτ
(4.56)

The signal-to-noise ratio, can be maximized considering the well-known Cauchy-Schwarz Inequality(∫ ∞
−∞

g1 (x) g2 (x)dx
)2

≤
∫ ∞
−∞

(|g1 (x) |)2
dx

∫ ∞
−∞

(|g2 (x) |)2
dx (4.57)

with equality when g1 (x) = αg2 (x). Applying the inequality directly yields an upper bound on SNR(∫∞
−∞ sm (τ)hk (T − τ) dτ

)2

N0
2

∫∞
−∞ (|hk (T − τ) |)2

dτ
≤ 2
N0

∫ ∞
−∞

(|sm (τ) |)2
dτ (4.58)

with equality ∀τ :
(
hopt
k (T − τ) = αsm (τ)

)
. Therefore, the �lter to examine signal m should be

Matched Filter
∀τ :

(
hopt
m (τ) = sm (T − τ)

)
(4.59)

The constant factor is not relevant when one considers the signal to noise ratio. The maximum SNR is
unchanged when both the numerator and denominator are scaled.

2
N0

∫ ∞
−∞

(|sm (τ) |)2
dτ =

2Es
N0

(4.60)

Examples involving matched �lter receivers can be found here (Section 4.9). An analysis in the frequency
domain is contained in Matched Filters in the Frequency Domain10.

Another type of receiver system is the correlation (Section 4.6) receiver. A performance analysis of both
matched �lters and correlator-type receivers can be found in Performance Analysis11.

4.9 Examples with Matched Filters12

The theory and rationale behind matched �lter receivers can be found in Matched Filters (Section 4.8).

Example 4.8

10"Matched Filters in the Frequency Domain" <http://cnx.org/content/m10151/latest/>
11"Performance Analysis" <http://cnx.org/content/m10106/latest/>
12This content is available online at <http://cnx.org/content/m10150/2.10/>.
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Figure 4.20

s1 (t) = t for 0 ≤ t ≤ T
s2 (t) = −t for 0 ≤ t ≤ T
h1 (t) = T − t for 0 ≤ t ≤ T
h2 (t) = −T + t for 0 ≤ t ≤ T

Figure 4.21

∀t, 0 ≤ t ≤ 2T :
(
s̃1 (t) =

∫ ∞
−∞

s1 (τ)h1 (t− τ) dτ
)

(4.61)

s̃1 (t) =
∫ t

0
τ (T − t+ τ) dτ

= 1
2 (T − t) τ2|t0 + 1

3τ
3|t0

= t2

2

(
T − t

3

) (4.62)

s̃1 (T ) =
T 3

3
(4.63)

Compared to the correlator-type demodulation

ψ1 (t) =
s1 (t)√
Es

(4.64)
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s11 =
∫ T

0

s1 (τ)ψ1 (τ) dτ (4.65)

∫ t
0
s1 (τ)ψ1 (τ) dτ = 1√

Es

∫ t
0
ττdτ

= 1√
Es

1
3 t

3
(4.66)

Figure 4.22

Example 4.9
Assume binary data is transmitted at the rate of 1

T Hertz.
0⇒ (b = 1)⇒ (s1 (t) = s (t)) for 0 ≤ t ≤ T
1⇒ (b = −1)⇒ (s2 (t) = −s (t)) for 0 ≤ t ≤ T

Xt =
P∑

i=−P
bis (t− iT ) (4.67)
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Figure 4.23

4.10 Performance Analysis of Binary Orthogonal Signals with

Correlation13

Orthogonal signals with equally likely bits, rt = sm (t)+Nt for 0 ≤ t ≤ T , m = 1, m = 2, and < s1, s2 >= 0.

4.10.1 Correlation (correlator-type) receiver

rt ⇒
(
r = (r1, r2)T = sm + η

)
(see Figure 4.24)

13This content is available online at <http://cnx.org/content/m10154/2.11/>.
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Figure 4.24

Decide s1 (t) was transmitted if r1 ≥ r2.

Pe = Pr [m̂ 6= m]

= Pr
[
b̂ 6= b

] (4.68)

Pe = 1/2Pr [r ∈ R2 | s1 (t) transmitted] + 1/2Pr [r ∈ R1 | s2 (t) transmitted] =
1/2

∫
R2

∫
f r,s1(t) (r ) dr 1dr 2 + 1/2

∫
R1

∫
f r,s2(t) (r ) dr 1dr 2 =

1/2
∫
R2

∫
1q

2π
N0
2

e
−(|r1−

√
Es|)2

N0
1√
πN0

e
−(|r2|)

2

N0 dr 1dr 2+1/2
∫
R1

∫
1q

2π
N0
2

e
−(|r1|)

2

N0
1√
πN0

e
−(|r2−

√
Es|)2

N0 dr 1dr 2

(4.69)

Alternatively, if s1 (t) is transmitted we decide on the wrong signal if r2 > r1 or η2 > η1 +
√
Es or when

η2 − η1 >
√
Es.

Pe = 1/2
∫∞√

Es
1√

2πN0
e
−η′2
2N0 dη ′+ 1/2Pr [r1 ≥ r2 | s2 (t) transmitted]

= Q
(√

Es
N0

) (4.70)

Note that the distance between s1 and s2 is d12 =
√

2Es. The average bit error probability Pe = Q
(

d12√
2N0

)
as we had for the antipodal case14. Note also that the bit-error probability is the same as for the matched
�lter (Section 4.11) receiver.

14"Performance Analysis of Antipodal Binary signals with Correlation" <http://cnx.org/content/m10152/latest/>
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4.11 Performance Analysis of Orthogonal Binary Signals with

Matched Filters15

rt ⇒

Y =

 Y1 (T )

Y2 (T )

 (4.71)

If s1 (t) is transmitted

Y1 (T ) =
∫∞
−∞ s1 (τ)hopt

1 (T − τ) dτ + ν1 (T )

=
∫∞
−∞ s1 (τ) s∗1 (τ) dτ + ν1 (T )

= Es + ν1 (T )

(4.72)

Y2 (T ) =
∫∞
−∞ s1 (τ) s∗2 (τ) dτ + ν2 (T )

= ν2 (T )
(4.73)

If s2 (t) is transmitted, Y1 (T ) = ν1 (T ) and Y2 (T ) = Es + ν2 (T ).

Figure 4.25

H0

Y =

 Es

0

+

 ν1

ν2

 (4.74)

H1

Y =

 0

Es

+

 ν1

ν2

 (4.75)

15This content is available online at <http://cnx.org/content/m10155/2.9/>.
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where ν1 and ν2 are independent are Gaussian with zero mean and variance N0
2 Es. The analysis is identical

to the correlator example (Section 4.10).

Pe = Q

(√
Es
N0

)
(4.76)

Note that the maximum likelihood detector decides based on comparing Y1 and Y2. If Y1 ≥ Y2 then s1

was sent; otherwise s2 was transmitted. For a similar analysis for binary antipodal signals, refer here16. See
Figure 4.26 or Figure 4.27.

Figure 4.26

Figure 4.27

4.12 Carrier Phase Modulation17

4.12.1 Phase Shift Keying (PSK)

Information is impressed on the phase of the carrier. As data changes from symbol period to symbol period,
the phase shifts.

∀m,m ∈ {1, 2, . . . ,M} :
(
sm (t) = APT (t) cos

(
2πfct+

2π (m− 1)
M

))
(4.77)

Example 4.10
Binary s1 (t) or s2 (t)

16"Performance Analysis of Binary Antipodal Signals with Matched Filters" <http://cnx.org/content/m10153/latest/>
17This content is available online at <http://cnx.org/content/m10128/2.10/>.
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4.12.2 Representing the Signals

An orthonormal basis to represent the signals is

ψ1 (t) =
1√
Es
APT (t) cos (2πfct) (4.78)

ψ2 (t) =
−1√
Es
APT (t) sin (2πfct) (4.79)

The signal

Sm (t) = APT (t) cos
(

2πfct+
2π (m− 1)

M

)
(4.80)

Sm (t) = Acos
(

2π (m− 1)
M

)
PT (t) cos (2πfct)−Asin

(
2π (m− 1)

M

)
PT (t) sin (2πfct) (4.81)

The signal energy

Es =
∫∞
−∞A2PT

2 (t) cos2
(

2πfct+ 2π(m−1)
M

)
dt

=
∫ T

0
A2
(

1
2 + 1

2cos
(

4πfct+ 4π(m−1)
M

))
dt

(4.82)

Es =
A2T

2
+

1
2
A2

∫ T

0

cos
(

4πfct+
4π (m− 1)

M

)
dt ' A2T

2
(4.83)

(Note that in the above equation, the integral in the last step before the aproximation is very small.)
Therefore,

ψ1 (t) =

√
2
T
PT (t) cos (2πfct) (4.84)

ψ2 (t) =

(
−
√

2
T

)
PT (t) sin (2πfct) (4.85)

In general,

∀m,m ∈ {1, 2, . . . ,M} :
(
sm (t) = APT (t) cos

(
2πfct+

2π (m− 1)
M

))
(4.86)

and ψ1 (t)

ψ1 (t) =

√
2
T
PT (t) cos (2πfct) (4.87)

ψ2 (t) =

√
2
T
PT (t) sin (2πfct) (4.88)

sm =

 √Escos
(

2π(m−1)
M

)
√
Essin

(
2π(m−1)

M

)  (4.89)
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4.12.3 Demodulation and Detection

rt = sm (t) +Nt, for somem ∈ {1, 2, . . . ,M} (4.90)

We must note that due to phase o�set of the oscillator at the transmitter, phase jitter or phase changes
occur because of propagation delay.

rt = APT (t) cos
(

2πfct+
2π (m− 1)

M
+ φ

)
+Nt (4.91)

For binary PSK, the modulation is antipodal, and the optimum receiver in AWGN has average bit-error
probability

Pe = Q

(√
2(Es)
N0

)
= Q

(
A
√

T
N0

) (4.92)

The receiver where
rt = ± (APT (t) cos (2πfct+ φ)) +Nt (4.93)

The statistics

r1 =
∫ T

0
rtαcos

(
2πfct+

^
φ

)
dt

= ±

(∫ T
0
αAcos (2πfct+ φ) cos

(
2πfct+

^
φ

)
dt

)
+
∫ T

0
αcos

(
2πfct+

^
φ

)
Ntdt

(4.94)

r1 = ±

(
αA

2

∫ T

0

cos

(
4πfct+ φ+

^
φ

)
+ cos

(
φ−

^
φ

)
dt

)
+ η1 (4.95)

r1 = ±

(
αA

2
T cos

(
φ−

^
φ

))
+
∫ T

0

±

(
αA

2
cos

(
4πfct+ φ+

^
φ

))
dt+η1±

(
αAT

2
cos

(
φ−

^
φ

))
+η1 (4.96)

where η1 = α
∫ T

0
Ntcos

(
ωct+

^
φ

)
dt is zero mean Gaussian with variance ' α2N0T

4 .

Therefore,

−
Pe = Q

 2αAT2 cos

0@φ−^φ
1A

2

q
α2N0T

4


= Q

(
cos

(
φ−

^
φ

)
A
√

T
N0

) (4.97)

which is not a function of α and depends strongly on phase accuracy.

Pe = Q

(
cos

(
φ−

^
φ

)√
2Es
N0

)
(4.98)

The above result implies that the amplitude of the local oscillator in the correlator structure does not play
a role in the performance of the correlation receiver. However, the accuracy of the phase does indeed play a
major role. This point can be seen in the following example:
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Example 4.11

xt′ = −1iAcos (− (2πfct′) + 2πfcτ) (4.99)

xt = −1iAcos (2πfct− (2πfcτ ′ − 2πfcτ + θ′)) (4.100)

Local oscillator should match to phase θ.

4.13 Carrier Frequency Modulation18

4.13.1 Frequency Shift Keying (FSK)

The data is impressed upon the carrier frequency. Therefore, the M di�erent signals are

sm (t) = APT (t) cos (2πfct+ 2π (m− 1) ∆ (f) t+ θm) (4.101)

for m ∈ {1, 2, . . . ,M}
The M di�erent signals have M di�erent carrier frequencies with possibly di�erent phase angles since

the generators of these carrier signals may be di�erent. The carriers are

f1 = fc (4.102)

f2 = fc + ∆ (f)

fM = fc −M∆ (f)

Thus, the M signals may be designed to be orthogonal to each other.

< sm, sn >=
∫ T

0
A2cos (2πfct+ 2π (m− 1) ∆ (f) t+ θm) cos (2πfct+ 2π (n− 1) ∆ (f) t+ θn) dt =

A2

2

∫ T
0

cos (4πfct+ 2π (n+m− 2) ∆ (f) t+ θm + θn) dt +
A2

2

∫ T
0

cos (2π (m− n) ∆ (f) t+ θm − θn) dt = A2

2
sin(4πfcT+2π(n+m−2)∆(f)T+θm+θn)−sin(θm+θn)

4πfc+2π(n+m−2)∆(f)
+

A2

2

(
sin(2π(m−n)∆(f)T+θm−θn)

2π(m−n)∆(f)
− sin(θm−θn)

2π(m−n)∆(f)

)
(4.103)

If 2fcT +(n+m− 2) ∆ (f)T is an integer, and if (m− n) ∆ (f)T is also an integer, then < Sm, Sn >= 0
if ∆ (f)T is an integer, then < sm, sn >' 0 when fc is much larger than 1

T .
In case ∀m, θm = 0 : (θm = 0)

< sm, sn >'
A2T

2
sinc (2 (m− n) ∆ (f)T ) (4.104)

Therefore, the frequency spacing could be as small as ∆ (f) = 1
2T since sinc (x) = 0 if x = ± (1) or ± (2).

If the signals are designed to be orthogonal then the average probability of error for binary FSK with
optimum receiver is

[U+2010]

P e = Q

(√
Es
N0

)
(4.105)

18This content is available online at <http://cnx.org/content/m10163/2.10/>.
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in AWGN.
Note that sinc (x) takes its minimum value not at x = ± (1) but at ± (1.4) and the minimum value is

−0.216. Therefore if ∆ (f) = 0.7
T then

[U+2010]

P e = Q

(√
1.216Es
N0

)
(4.106)

which is a gain of 10× log1.216 ' 0.85dθ over orthogonal FSK.

4.14 Di�erential Phase Shift Keying19

The phase lock loop provides estimates of the phase of the incoming modulated signal. A phase ambiguity
of exactly π is a common occurance in many phase lock loop (PLL) implementations.

Therefore it is possible that,
^
θ= θ + π without the knowledge of the receiver. Even if there is no noise,

if b = 1 then
^
b= 0 and if b = 0 then

^
b= 1.

In the presence of noise, an incorrect decision due to noise may results in a correct �nal desicion (in
binary case, when there is π phase ambiguity with the probability:

Pe = 1−Q

(√
2Es
N0

)
(4.107)

Consider a stream of bits an ∈ {0, 1} and BPSK modulated signal∑
n

−1anAPT (t− nT ) cos (2πfct+ θ) (4.108)

In di�erential PSK, the transmitted bits are �rst encoded bn = an ⊕ bn−1 with initial symbol (e.g. b0)
chosen without loss of generality to be either 0 or 1.

Transmitted DPSK signals ∑
n

−1bnAPT (t− nT ) cos (2πfct+ θ) (4.109)

The decoder can be constructed as

bn−1 ⊕ bn = bn−1 ⊕ an ⊕ bn−1

= 0⊕ an
= an

(4.110)

If two consecutive bits are detected correctly, if
^
bn = bn and

^
bn−1 = bn−1 then

^
an =

^
bn ⊕

^
bn−1

= bn ⊕ bn−1

= an ⊕ bn−1 ⊕ bn−1

= an

(4.111)

19This content is available online at <http://cnx.org/content/m10156/2.7/>.
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if
^
bn = bn ⊕ 1 and

^
bn−1 = bn−1 ⊕ 1. That is, two consecutive bits are detected incorrectly. Then,

^
an =

^
bn ⊕

^
bn−1

= bn ⊕ 1⊕ bn−1 ⊕ 1

= bn ⊕ bn−1 ⊕ 1⊕ 1

= bn ⊕ bn−1 ⊕ 0

= bn ⊕ bn−1

= an

(4.112)

If
^
bn = bn ⊕ 1 and

^
bn−1 = bn−1, that is, one of two consecutive bits is detected in error. In this case there

will be an error and the probability of that error for DPSK is

P e = Pr

[
^
an 6= an

]
= Pr

[
^
bn = bn,

^
bn−1 6= bn−1

]
+ Pr

[
^
bn 6= bn,

^
bn−1 = bn−1

]
= 2Q

(√
2Es
N0

) [
1−Q

(√
2Es
N0

)]
' 2Q

(√
2Es
N0

) (4.113)

This approximation holds if Q is small.
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Chapter 5

Chapter 4: Communication over

Band-limitted AWGN Channel

5.1 Digital Transmission over Baseband Channels1

Until this point, we have considered data transmissions over simple additive Gaussian channels that are not
time or band limited. In this module we will consider channels that do have bandwidth constraints, and are
limited to frequency range around zero (DC). The channel is best modi�ed as g (t) is the impulse response
of the baseband channel.

Consider modulated signals xt = sm (t) for 0 ≤ t ≤ T for some m ∈ {1, 2, . . . ,M} . The channel output
is then

rt =
∫∞
−∞ xτg (t− τ) dτ +Nt

=
∫∞
−∞ Sm (τ) g (t− τ) dτ +Nt

(5.1)

The signal contribution in the frequency domain is

∀f :
(
S̃m (f) = Sm (f)G (f)

)
(5.2)

The optimum matched �lter should match to the �ltered signal:

∀f :
(
Hopt
m (f) = Sm (f)G (f)e(−i)2πft

)
(5.3)

This �lter is indeed optimum (i.e., it maximizes signal-to-noise ratio); however, it requires knowledge of
the channel impulse response. The signal energy is changed to

Es̃ =
∫ ∞
−∞

(
|S̃m (f) |

)2

df (5.4)

The band limited nature of the channel and the stream of time limited modulated signal create aliasing
which is referred to as intersymbol interference. We will investigate ISI for a general PAM signaling.

5.2 Introduction to ISI2

A typical baseband digital system is described in Figure 1(a). At the transmitter, the modulated pulses are
�ltered to comply with some bandwidth constraint. These pulses are distorted by the reactances of the cable

1This content is available online at <http://cnx.org/content/m10056/2.12/>.
2This content is available online at <http://cnx.org/content/m15519/1.5/>.
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or by fading in the wireless systems. Figure 1(b) illustrates a convenient model, lumping all the �ltering into
one overall equivalent system transfer function.

H (f) = Ht (f) .Hc (f) .Hr (f)

Figure 5.1: Intersymbol interference in the detection process. (a) Typical baseband digital system. (b)
Equivalent model

Due to the e�ects of system �ltering, the received pulses can overlap one another as shown in Figure
1(b). Such interference is termed InterSymbol Interfernce (ISI). Even in the absence of noise, the e�ects of
�ltering and channel-induced distortion lead to ISI.

Nyquist investigated and showed that theoretical minimum system bandwidth needed in order to detect
Rs symbols/s, without ISI, is Rs/2 or 1/2T hertz. For baseband systems, when H (f) is such a �lter with
single-sided bandwidth 1/2T (the ideal Nyquist �lter) as shown in �gure 2a, its impulse response is of
the form h (t) = sinc (t/T ), shown in �gure 2b. This sinc (t/T )-shaped pulse is called the ideal Nyquist
pulse. Even though two successive pulses h (t) and h (t− T ) with long tail, the �gure shows all tail of h (t)
passing through zero amplitude at the instant when h (t− T ) is to be sampled. Therefore, assuming that
the synchronization is perfect, there will be no ISI.
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Figure 5.2: Nyquist channels for zero ISI. (a) Rectangular system transfer function H(f). (b) Received
pulse shape h (t) = sinc (t/T )

Figure 2 Nyquist channels for zero ISI. (a) Rectangular system transfer function H(f). (b) Received pulse
shape h (t) = sinc (t/T )

The names "Nyquist �lter" and "Nyquist pulse" are often used to describe the general class of �ltering
and pulse-shaping that satisfy zero ISI at the sampling points. Among the class of Nyquist �lters, the most
popular ones are the raised cosine and root-raised cosine.

A fundamental parameter for communication system is bandwidth e�ciency, R/W bits/s/Hz. For ideal
Nyquist �ltering, the theoretical maximum symbol-rate packing without ISI is 2symbols/s/Hz. For example,
with 64-ary PAM, M = 64 = 26 amplitudes, the theoretical maximum bandwidth e�ciency is possible
without ISI is 6bits/symbol.2symbols/s/Hz = 12bits/s/Hz.

5.3 Pulse Amplitude Modulation Through Bandlimited Channel3

Consider a PAM system b−10,. . ., b−1, b0 b1,. . .
This implies

∀a n, an ∈ {M levels of amplitude} :

(
xt =

∞∑
n=−∞

ans (t− nT )

)
(5.5)

The received signal is

rt =
∫∞
−∞

∑∞
n=−∞ ans (t− (τ − nT )) g (τ) dτ +Nt

=
∑∞
n=−∞ an

∫∞
−∞ s (t− (τ − nT )) g (τ) dτ +Nt

=
∑∞
n=−∞ ans̃ (t− nT ) +Nt

(5.6)

Since the signals span a one-dimensional space, one �lter matched to s̃ (t) = sg (t) is su�cient.

3This content is available online at <http://cnx.org/content/m10094/2.7/>.
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The matched �lter's impulse response is

∀t :
(
hopt (t) = sg (T − t)

)
(5.7)

The matched �lter output is

y (t) =
∫∞
−∞

∑∞
n=−∞ ans̃ (t− (τ − nT ))hopt (τ) dτ + ν (t)

=
∑∞
n=−∞ an

∫∞
−∞ s̃ (t− (τ − nT ))hopt (τ) dτ + ν (t)

=
∑∞
n=−∞ anu (t− nT ) + ν (t)

(5.8)

The decision on the kth symbol is obtained by sampling the MF output at kT :

y (kT ) =
∞∑

n=−∞
anu (kT − nT ) + ν (kT ) (5.9)

The kth symbol is of interest:

y (kT ) = aku (0) +
∞∑

n=−∞
anu (kT − nT ) + ν (kT ) (5.10)

where n 6= k.
Since the channel is bandlimited, it provides memory for the transmission system. The e�ect of old

symbols (possibly even future signals) lingers and a�ects the performance of the receiver. The e�ect of
ISI can be eliminated or controlled by proper design of modulation signals or precoding �lters at the
transmitter, or by equalizers or sequence detectors at the receiver.

5.4 Precoding and Bandlimited Signals4

5.4.1 Precoding

The data symbols are manipulated such that

yk (kT ) = aku (0) + ISI + ν (kT ) (5.11)

5.4.2 Design of Bandlimited Modulation Signals

Recall that modulation signals are

Xt =
∞∑

n=−∞
ans (t− nT ) (5.12)

We can design s (t) such that

u (nT ) =

 large if n = 0

zero or small if n 6= 0
(5.13)

where y (kT ) = aku (0) +
∑∞
n=−∞ anu (kT − nT ) + ν (kT ) (ISI is the sum term, and once again, n 6= k .)

Also, y (nT ) = sghopt (nT ) The signal s (t) can be designed to have reduced ISI.

4This content is available online at <http://cnx.org/content/m10118/2.6/>.

Available for free at Connexions <http://cnx.org/content/col10474/1.7>



79

5.4.3 Design Equalizers at the Receiver

Linear equalizers or decision feedback equalizers reduce ISI in the statistic yt

5.4.4 Maximum Likelihood Sequence Detection

y (kT ) =
∞∑

n=−∞
an (kT − nT ) + ν (k (T )) (5.14)

By observing y (T ) , y (2T ) , . . . the date symbols are observed frequently. Therefore, ISI can be viewed as
diversity to increase performance.

5.5 Pulse Shaping to Reduce ISI5

The Raised-Cosine Filter
Transfer function beloging to the Nyquist class (zero ISI at the sampling time) is called the raised-cosine

�lter. It can be express as

H (f) = {
1 | f |< 2W 0 −W

cos2
(
π
4
|f |+W−2W 0
W−W0

)
2W 0 −W < | f |< W

0 | f > W |

(1a)

h (t) = 2W 0sinc (2W 0t)
cos[2π(W−W0)t]
1−[4(W−W0)t]

2
(1b)

Where W is the absolute bandwidth. W0 = 1/2T represent the minimum bandwidth for the rectangular
spectrum and the -6 dB bandwith (or half-amplitude point) for the raised-cosine spectrum. W − W0 is
termed the "excess bandwith"

The roll-o� factor is de�ned to be r = W−W0
W0

(2), where 0 ≤ r ≤ 1
With the Nyquist constrain W0 = Rs/2 equation (2) can be rewriten as
W = 1

2 (1 + r)Rs
5This content is available online at <http://cnx.org/content/m15520/1.2/>.
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Figure 5.3: Raised-cosine �lter characteristics. (a) System transfer function. (b) System impulse
response

The raised-cosine characteristic is illustrate in �gure 1 for r = 0, r = 0.5, r = 1. When r = 1, the required
excess bandwidth is 100 %, and the system can provide a symbol rate of Rs symbols/s using a bandwidth
of Rs herts (twice the Nyquist minimum bandwidth), thus yielding asymbol-rate packing 1 symbols/s/Hz.

The lager the �lter roll-o�, the shorter will be the pulse tail. Small tails exhibit less sensitivity to timing
errors and thus make for small degradation due to ISI.

The smaller the �lter roll-o� the smaller will be the excess bandwidth. The cost is longer pulse tails,
larger pulse amplitudes, and thus, greater sensitivity to timing errors.
The Root Raised-Cosine Filter

Recall that the raised-cosine frequency transfer function describes the composite H (f) including trans-
mitting �lter, channel �lter and receiving �lter. The �ltering at the receiver is chosen so that the overall
transfer function is a form of raised-cosine. Often this is accomplished by choosing both the receiving �lter
and the transmitting �lter so that each has a transfer function known as a root raised cosine. Neglecting
any channel-induced ISI, the product of these root-raised cosine functions yields the composite raised-cosine
system transfer function.

5.6 Two Types of Error-Performance Degradation6

Error-performance degradation can be classifyed in two group. The �rst one is due to a decrease in received
signal power or an increase in noise or inteference power, giving rise to a loss in signal-to-noise ratio EB/N0.
The second one is due to signal distortion such as ISI.

6This content is available online at <http://cnx.org/content/m15527/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10474/1.7>



81

Figure 5.4: Bit error probability

Suppose that we need a communication system with a bit-error probability PB versus Eb/N0 characteristic
corresponding to the solid-line curve plotted in �gure 1. Suppose that after the system is con�gured, the
performance dose not follow the theoretical curve, but in facts follows the dashed line plot (1). A loss in
Eb/N0 due to some signal losses or an increased level of noise or interference. This loss in EB/N0 is not so
terrible when compared with possible e�ects of degradation caused by a distortion mechanism corresponding
to the dashed line plot (2). Instead of su�ering a simple loss in signal-to-noise ratio there is a degradation
e�ect brought about by ISI. If there is no solution to this problem, there is no a mount of EB/N0 that will
improve this problem. More EB/N0 can not help the ISI problem because a incresing in EB/N0 dose not
make change in overlapped pulses.

5.7 Eye Pattern7

An eye pattern is the display that results from measuring a system' s response to baseband signals in a
prescribed way.

7This content is available online at <http://cnx.org/content/m15521/1.2/>.
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Figure 5.5: Eye pattern

Figure 1 describe the eye pattern that results for binary binary pulse signalling. The width of the
opening indicates the time over which sampling for detection might be performed. The optimum sampling
time corresponds to the maxmum eye opening, yielding the greatest protection against noise. If there were
no �ltering in the system then the system would look like a box rather than an eye. In �gure 1, DA, the
range of amplitude di�erences of the zero crossings, is a measure of distortion caused by ISI.

JT , the range of amplitude di�erences of the zero crossing , is a measure of the timmung jitter. MN is a
measure of noise margin. ST is mesuare of sensity-to-timing error.

In general, the most frequent use of the eye pattern is for qualitatively assessing the extent of the ISI.
As the eye closes, ISI is increase; as the eye opens, ISI is decreaseing.

5.8 Transversal Equalizer8

A training sequence used for equalization is often chosen to be a noise-like sequence which is needed to
estimate the channel frequency response.

In the simplest sense, training sequence might be a single narrow pulse, but a pseudonoise (PN) signal
is preferred in practise because the PN signal has larger average power and hence larger SNR for the same
peak transmitted power.

8This content is available online at <http://cnx.org/content/m15522/1.4/>.
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Figure 5.6: Received pulse exhibiting distortion

Consider that a single pulse was transmitted over a system designated to have a raised-cosine transfer
function HRC (t) = Ht (f) .Hr (f), also consider that the channel induces ISI, so that the received demod-
ulated pulse exhibits distortion, as shown in �gure 1, such that the pulse sidelobes do not go through zero
at sample times. To achieve the desired raised-cosine transfer function, the equalizing �lter should have a
frequency response

He (f) = 1
Hc(f) = 1

|Hc(f)|e
−jθc(f) (1)

In other words, we would like the equalizing �lter to generate a set of canceling echoes. The transversal
�lter, illustrated in �gure 2, is the most popular form of an easily adjustable equalizing �lter consisting of a
delay line with T-second taps (where T is the symbol duration). The tab weights could be chosen to force
the system impulse response to zero at all but one of the sampling times, thus making He (f) correspond
exactly to the inverse of the channel transfer function Hc (f)
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Figure 5.7: Transversal �lter

Consider that there are 2N + 1 taps with weights c−N , c−N+1, ...cN . Output samples z (k) are the
convolution the input sample x (k) and tap weights cn as follows:

z (k) =
∑N
n=−N x (k − n) cnk = −2N, ...2N(2)

By de�ning the vectors z and c and the matrix x as respectively,

z =



z (−2N)
...

z (0)
...

z (2N)


c =



c−N
...

c0
...

cN


x =



x (−N) 0 0 . . . 0 0

x (−N + 1) x (−N) 0 . . . . . . . . .
...

...
...

x (N) x (N − 1) x (N − 2) . . . x (−N + 1) x (−N)
...

...
...

0 0 0 . . . x (N) x (N − 1)

0 0 0 . . . 0 x (N)


We can describe the relationship among z (k), x (k) and cn more compactly as
z = x.c(3a)
Whenever the matrix x is square, we can �nd c by solving the following equation:
c = x−1z(3b)
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Notice that the index k was arbitrarily chosen to allow for 4N + 1 sample points. The vectors z and c
have dimensions 4N + 1 and 2N + 1. Such equations are referred to as an overdetermined set. This problem
can be solved in deterministic way known as the zero-forcing solution, or, in a statistical way, known as the
minimum mean-square error (MSE) solution.
Zero-Forcing Solution

At �rst, by disposing top N rows and bottom N rows, matrix x is transformed into a square matrix of
dimension 2N + 1 by 2N + 1. Then equation c = x−1z is used to solve the 2N + 1 simultaneous equations
for the set of 2N + 1 weights cn. This solution minimizes the peak ISI distortion by selecting the Cn weight
so that the equalizer output is forced to zero at N sample points on either side of the desired pulse.

z (k) = {
1 k = 0

0 k = ±1,±2,±3
(4)

For such an equalizer with �nite length, the peak distortion is guaranteed to be minimized only if the
eye pattern is initially open. However, for high-speed transmission and channels introducing much ISI, the
eye is often closed before equalization. Since the zero-forcing equalizer neglects the e�ect of noise, it is not
always the best system solution.
Minimum MSE Solution

A more robust equalizer is obtained if the cn tap weights are chose to minimize the mean-square error
(MSE) of all the ISI term plus the noise power at the out put of the equalizer. MSE is de�ned as the expected
value of the squared di�erence between the desire data symbol and the estimated data symbol.

By multiplying both sides of equation (4) by xT , we have
xT z = xTxc(5)
And
Rxz = Rxxc (6)
Where Rxz = xT z is called the cross-correlation vector and Rxx = xTx is call the autocorrelation matrix of

the input noisy signal. In practice, Rxz and Rxx are unknown, but they can be approximated by transmitting
a test signal and using time average estimated to solve for the tap weights from equation (6) as follows:

c = R−1
xx Rxz

Most high-speed telephone-line modems use an MSE weight criterion because it is superior to a zero-
forcing criterion; it is more robust in the presence of noise and large ISI.

5.9 Decision Feedback Equalizer9

The basic limitation of a linear equalizer, such as the transversal �lter, is the poor perform on channel
having spectral nulls. A decision feedback equalizer (DFE) is a nonlinear equalizer that uses previous
detector decision to eliminate the ISI on pulses that are currently being demodulated. In other words, the
distortion on a current pulse that was caused by previous pulses is subtracted.

9This content is available online at <http://cnx.org/content/m15524/1.4/>.
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Figure 5.8: Decision feedback Equalizer

Figure 1 shows a simpli�ed block diagram of a DFE where the forward �lter and the feedback �lter can
each be a linear �lter, such as transversal �lter. The nonlinearity of the DFE stems from the nonlinear
characteristic of the detector that provides an input to the feedback �lter. The basic idea of a DFE is that
if the values of the symbols previously detected are known, then ISI contributed by these symbols can be
canceled out exactly at the output of the forward �lter by subtracting past symbol values with appropriate
weighting. The forward and feedback tap weights can be adjusted simultaneously to ful�ll a criterion such
as minimizing the MSE.

The advantage of a DFE implementation is the feedback �lter, which is additionally working to remove
ISI, operates on noiseless quantized levels, and thus its output is free of channel noise.

5.10 Adaptive Equalization10

Another type of equalization, capable of tracking a slowly time-varying channel response, is known as adap-
tive equalization. It can be implemented to perform tap-weight adjustments periodically or continually.
Periodic adjustments are accomplished by periodically transmitting a preamble or short training sequence of
digital data known by the receiver. Continual adjustment are accomplished by replacing the known training
sequence with a sequence of data symbols estimated from the equalizer output and treated as known data.
When performed continually and automatically in this way, the adaptive procedure is referred to as decision
directed.

If the probability of error exceeds one percent, the decision directed equalizer might not converge. A
common solution to this problem is to initialize the equalizer with an alternate process, such as a preamble

10This content is available online at <http://cnx.org/content/m15523/1.2/>.
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to provide good channel-error performance, and then switch to decision-directed mode.
The simultaneous equations described in equation (3) of module �Transversal Equalizer11 �, do not include

the e�ects of channel noise. To obtain stable solution to the �lter weights, it is necessary that the data be
averaged to obtain the stable signal statistic, or the noisy solution obtained from the noisy data must be
averaged. The most robust algorithm that average noisy solution is the least-mean-square (LMS) algorithm.
Each iteration of this algorithm uses a noisy estimate of the error gradient to adjust the weights in the
direction to reduce the average mean-square error.

The noisy gradient is simply the product e (k) rx of an error scalar e (k)and the data vector rx.

e (k) = z (k)− Θ
z (k) (1)

Where z (k) and
Θ
z (k) are the desired output signal (a sample free of ISI) and the estimate at time k.

Θ
z (k) = cT rx =

∑N
n=−N x (k − n) cn (2)

Where cT is the transpose of the weight vector at time k.
Iterative process that updates the set of weights is obtained as follows:
c (k + 1) = c (k) + ∆e (k) rx (3)
Where c (k) is the vector of �lter weights at time k, and ∆ is a small term that limits the coe�cient step

size and thus controls the rate of convergence of the algorithm as well as the variance of the steady state
solution. Stability is assured if the parameter ∆ is smaller than the reciprocal of the energy of the data in
the �lter. Thus, while we want the convergence parameter ∆ to be large for fast convergence but not so
large as to be unstable, we also want it to be small enough for low variance.

11http://cnx.org/content/m15522/latest/
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Chapter 6

Chapter 5: Channel Coding

6.1 Channel Capacity1

In the previous section, we discussed information sources and quanti�ed information. We also discussed how
to represent (and compress) information sources in binary symbols in an e�cient manner. In this section,
we consider channels and will �nd out how much information can be sent through the channel reliably.

We will �rst consider simple channels where the input is a discrete random variable and the output is
also a discrete random variable. These discrete channels could represent analog channels with modulation
and demodulation and detection.

Figure 6.1

Let us denote the input sequence to the channel as

X =


X1

X2

...

Xn

 (6.1)

where Xi ∈ X a discrete symbol set or input alphabet.

1This content is available online at <http://cnx.org/content/m10173/2.8/>.
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The channel output

Y =



Y1

Y2

Y3

...

Yn


(6.2)

where Yi ∈ Y a discrete symbol set or output alphabet.
The statistical properties of a channel are determined if one �nds pY|X (y|x) for all y ∈ Y n and for all

x ∈ Xn
. A discrete channel is called a discrete memoryless channel if

pY|X (y|x) =
n∏
i=1

pYi|Xi (yi|xi) (6.3)

for all y ∈ Y n and for all x ∈ Xn
.

Example 6.1
A binary symmetric channel (BSC) is a discrete memoryless channel with binary input and binary
output and pY |X (y = 0|x = 1) = pY |X (y = 1|x = 0). As an example, a white Gaussian channel

with antipodal signaling and matched �lter receiver has probability of error of Q
(√

2Es
N0

)
. Since

the error is symmetric with respect to the transmitted bit, then

pY |X (0|1) = pY |X (1|0)

= Q
(√

2Es
N0

)
= ε

(6.4)

Figure 6.2

It is interesting to note that every time a BSC is used one bit is sent across the channel with probability
of error of ε. The question is how much information or how many bits can be sent per channel use, reli-
ably. Before we consider the above question a few de�nitions are essential. These are discussed in mutual
information (Section 6.2).
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6.2 Mutual Information2

Recall that

H (X,Y ) = −
∑
xx

∑
yy

p X,Y (x, y ) logp X,Y (x, y ) (6.5)

H (Y ) +H (X|Y ) = H (X) +H (Y |X) (6.6)

De�nition 6.1: Mutual Information
The mutual information between two discrete random variables is denoted by I (X;Y ) and de�ned
as

I (X;Y ) = H (X)−H (X|Y ) (6.7)

Mutual information is a useful concept to measure the amount of information shared between input
and output of noisy channels.

In our previous discussions it became clear that when the channel is noisy there may not be reliable
communications. Therefore, the limiting factor could very well be reliability when one considers noisy
channels. Claude E. Shannon in 1948 changed this paradigm and stated a theorem that presents the rate
(speed of communication) as the limiting factor as opposed to reliability.

Example 6.2
Consider a discrete memoryless channel with four possible inputs and outputs.

Figure 6.3

Every time the channel is used, one of the four symbols will be transmitted. Therefore, 2 bits are
sent per channel use. The system, however, is very unreliable. For example, if "a" is received, the
receiver can not determine, reliably, if "a" was transmitted or "d". However, if the transmitter and
receiver agree to only use symbols "a" and "c" and never use "b" and "d", then the transmission
will always be reliable, but 1 bit is sent per channel use. Therefore, the rate of transmission was
the limiting factor and not reliability.

This is the essence of Shannon's noisy channel coding theorem, i.e., using only those inputs whose corre-
sponding outputs are disjoint (e.g., far apart). The concept is appealing, but does not seem possible with
binary channels since the input is either zero or one. It may work if one considers a vector of binary inputs
referred to as the extension channel.

2This content is available online at <http://cnx.org/content/m10178/2.9/>.
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X input vector =


X1

X2

...

Xn

 ∈ X
n

= {0, 1}n

Y output vector =


Y1

Y2

...

Yn

 ∈ Y
n

= {0, 1}n

Figure 6.4

This module provides a description of the basic information necessary to understand Shannon's Noisy
Channel Coding Theorem (Section 6.4). However, for additional information on typical sequences, please
refer to Typical Sequences (Section 6.3).

6.3 Typical Sequences3

If the binary symmetric channel has crossover probability ε then if x is transmitted then by the Law of Large
Numbers the output y is di�erent from x in nε places if n is very large.

dH (x, y) ' nε (6.8)

The number of sequences of length n that are di�erent from x of length n at nε is n

nε

 =
n!

(nε)! (n− nε)!
(6.9)

Example 6.3
x = (0, 0, 0)T and ε = 1

3 and nε = 3× 1
3 . The number of output sequences di�erent from x by one

element: 3!
1!2! = 3×2×1

1×2 = 3 given by (1, 0, 1)T , (0, 1, 1)T , and (0, 0, 0)T .
Using Stirling's approximation

n! ' nne−n
√

2πn (6.10)

3This content is available online at <http://cnx.org/content/m10179/2.10/>.
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we can approximate  n

nε

 ' 2n((−(εlog2ε))−(1−ε)log2(1−ε)) = 2nHb(ε) (6.11)

where Hb (ε) ≡ (− (εlog2ε)) − (1− ε) log2 (1− ε) is the entropy of a binary memoryless source. For any x
there are 2nHb(ε) highly probable outputs that correspond to this input.

Consider the output vector Y as a very long random vector with entropy nH (Y ). As discussed earlier
(Example 3.1), the number of typical sequences (or highly probably) is roughly 2nH(Y ). Therefore, 2n is the
total number of binary sequences, 2nH(Y ) is the number of typical sequences, and 2nHb(ε) is the number of
elements in a group of possible outputs for one input vector. The maximum number of input sequences that
produce nonoverlapping output sequences

M = 2nH(Y )

2nHb(ε)

= 2n(H(Y )−Hb(ε))
(6.12)

Figure 6.5

The number of distinguishable input sequences of length n is

2n(H(Y )−Hb(ε)) (6.13)

The number of information bits that can be sent across the channel reliably per n channel uses
n (H (Y )−Hb (ε)) The maximum reliable transmission rate per channel use

R = log2M
n

= n(H(Y )−Hb(ε))
n

= H (Y )−Hb (ε)

(6.14)

The maximum rate can be increased by increasing H (Y ). Note that Hb (ε) is only a function of the crossover
probability and can not be minimized any further.

The entropy of the channel output is the entropy of a binary random variable. If the input is chosen to
be uniformly distributed with pX (0) = pX (1) = 1

2 .
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Then

pY (0) = 1pX (0) + εpX (1)

= 1
2

(6.15)

and

pY (1) = 1pX (1) + εpX (0)

= 1
2

(6.16)

Then, H (Y ) takes its maximum value of 1. Resulting in a maximum rate R = 1 −Hb (ε) when pX (0) =
pX (1) = 1

2 . This result says that ordinarily one bit is transmitted across a BSC with reliability 1 − ε. If
one needs to have probability of error to reach zero then one should reduce transmission of information to
1−Hb (ε) and add redundancy.

Recall that for Binary Symmetric Channels (BSC)

H (Y |X) = px (0)H (Y |X = 0) + px (1)H (Y |X = 1)

= px (0) (− ((1− ε) log2 (1− ε)− εlog2ε)) + px (1) (− ((1− ε) log2 (1− ε)− εlog2ε))

= (− ((1− ε) log2 (1− ε)))− εlog2ε

= Hb (ε)

(6.17)

Therefore, the maximum rate indeed was

R = H (Y )−H (Y |X)

= I (X;Y )
(6.18)

Example 6.4
The maximum reliable rate for a BSC is 1 −Hb (ε). The rate is 1 when ε = 0 or ε = 1. The rate
is 0 when ε = 1

2

Figure 6.6

This module provides background information necessary for an understanding of Shannon's Noisy Chan-
nel Coding Theorem (Section 6.4). It is also closely related to material presented in Mutual Information
(Section 6.2).
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6.4 Shannon's Noisy Channel Coding Theorem4

It is highly recommended that the information presented in Mutual Information (Section 6.2) and in Typical
Sequences (Section 6.3) be reviewed before proceeding with this document. An introductory module on the
theorem is available at Noisy Channel Theorems 5.

Theorem 6.1: Shannon's Noisy Channel Coding
The capacity of a discrete-memoryless channel is given by

C = maxp X x {I (X;Y ) | pX (x)} (6.19)

where I (X;Y ) is the mutual information between the channel input X and the output Y . If the
transmission rate R is less than C, then for any ε > 0 there exists a code with block length n large
enough whose error probability is less than ε. If R > C, the error probability of any code with any
block length is bounded away from zero.

Example 6.5
If we have a binary symmetric channel with cross over probability 0.1, then the capacity C ' 0.5
bits per transmission. Therefore, it is possible to send 0.4 bits per channel through the channel
reliably. This means that we can take 400 information bits and map them into a code of length
1000 bits. Then the whole code can be transmitted over the channels. One hundred of those bits
may be detected incorrectly but the 400 information bits may be decoded correctly.

Before we consider continuous-time additive white Gaussian channels, let's concentrate on discrete-time
Gaussian channels

Yi = Xi + ηi (6.20)

where the Xi's are information bearing random variables and ηi is a Gaussian random variable with variance
σ2
η. The input Xi's are constrained to have power less than P

1
n

n∑
i=1

Xi
2 ≤ P (6.21)

Consider an output block of size n
Y = X + η (6.22)

For large n, by the Law of Large Numbers,

1
n

n∑
i=1

ηi
2 =

1
n

n∑
i=1

(|yi − xi|)2 ≤ ση2 (6.23)

This indicates that with large probability as n approaches in�nity, Y will be located in an n-dimensional
sphere of radius

√
nση2 centered about X since (|y − x|)2 ≤ nση2

On the other hand since Xi's are power constrained and ηi and Xi's are independent

1
n

n∑
i=1

yi
2 ≤ P + ση

2 (6.24)

|Y | ≤ n
(
P + ση

2
)

(6.25)

This mean Y is in a sphere of radius
√
n (P + ση2) centered around the origin.

4This content is available online at <http://cnx.org/content/m10180/2.10/>.
5"Noisy Channel Coding Theorem" <http://cnx.org/content/m0073/latest/>
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How many X's can we transmit to have nonoverlapping Y spheres in the output domain? The question
is how many spheres of radius

√
nση2 �t in a sphere of radius

√
n (P + ση2).

M =

“√
n(ση2+P )

”n“√
nση2

”n
=

(
1 + P

ση2

)n
2

(6.26)

Figure 6.7

Exercise 6.4.1 (Solution on p. 101.)

How many bits of information can one send in n uses of the channel?

The capacity of a discrete-time Gaussian channel C = 1
2 log2

(
1 + P

ση2

)
bits per channel use.

When the channel is a continuous-time, bandlimited, additive white Gaussian with noise power spectral
density N0

2 and input power constraint P and bandwidth W . The system can be sampled at the Nyquist
rate to provide power per sample P and noise power

ση
2 =

∫W
−W

N0
2 df

= WN0

(6.27)

The channel capacity 1
2 log2

(
1 + P

N0W

)
bits per transmission. Since the sampling rate is 2W , then

C =
2W
2

log2

(
1 +

P

N0W

)
bits/trans. x trans./sec (6.28)

C = W log2

(
1 +

P

N0W

)
bits
sec

(6.29)

Example 6.6
The capacity of the voice band of a telephone channel can be determined using the Gaussian model.
The bandwidth is 3000 Hz and the signal to noise ratio is often 30 dB. Therefore,

C = 3000log2 (1 + 1000) ' 30000
bits
sec

(6.30)

One should not expect to design modems faster than 30 Kbs using this model of telephone channels.
It is also interesting to note that since the signal to noise ratio is large, we are expecting to transmit
10 bits/second/Hertz across telephone channels.
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6.5 Channel Coding6

Channel coding is a viable method to reduce information rate through the channel and increase reliability.
This goal is achieved by adding redundancy to the information symbol vector resulting in a longer coded
vector of symbols that are distinguishable at the output of the channel. Another brief explanation of channel
coding is o�ered in Channel Coding and the Repetition Code7. We consider only two classes of codes, block
codes (Section 6.5.1: Block codes) and convolutional codes (Section 6.6).

6.5.1 Block codes

The information sequence is divided into blocks of length k. Each block is mapped into channel inputs of
length n. The mapping is independent from previous blocks, that is, there is no memory from one block to
another.

Example 6.7
k = 2 and n = 5

00→ 00000 (6.31)

01→ 10100 (6.32)

10→ 01111 (6.33)

11→ 11011 (6.34)

information sequence ⇒ codeword (channel input)

A binary block code is completely de�ned by 2k binary sequences of length n called codewords.

C = {c1, c2, . . . , c2k} (6.35)

ci ∈ {0, 1}n (6.36)

There are three key questions,

1. How can one �nd "good" codewords?
2. How can one systematically map information sequences into codewords?
3. How can one systematically �nd the corresponding information sequences from a codeword, i.e., how

can we decode?

These can be done if we concentrate on linear codes and utilize �nite �eld algebra.
A block code is linear if ci ∈ C and cj ∈ C implies ci ⊕ cj ∈ C where ⊕ is an elementwise modulo 2

addition.
Hamming distance is a useful measure of codeword properties

dH (ci, cj) = #of places that they are di�erent (6.37)

6This content is available online at <http://cnx.org/content/m10174/2.11/>.
7"Repetition Codes" <http://cnx.org/content/m0071/latest/>
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Denote the codeword for information sequence e1 =



1

0

0

0
...

0

0


by g1 and e2 =



0

1

0

0
...

0

0


by g2,. . ., and ek =



0

0

0

0
...

0

1


by gk. Then any information sequence can be expressed as

u =


u1

...

uk


=

∑k
i=1 uiei

(6.38)

and the corresponding codeword could be

c =
k∑
i=1

uigi (6.39)

Therefore
c = uG (6.40)

with c = {0, 1}n and u ∈ {0, 1}k where G =


g1

g2

...

gk

, a kxn matrix and all operations are modulo 2.

Example 6.8
In Example 6.7 with

00→ 00000 (6.41)

01→ 10100 (6.42)

10→ 01111 (6.43)

11→ 11011 (6.44)
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g1 = (0, 1, 1, 1, 1)T and g2 = (1, 0, 1, 0, 0)T and G =

 0 1 1 1 1

1 0 1 0 0


Additional information about coding e�ciency and error are provided in Block Channel Coding8.

Examples of good linear codes include Hamming codes, BCH codes, Reed-Solomon codes, and many
more. The rate of these codes is de�ned as k

n and these codes have di�erent error correction and error
detection properties.

6.6 Convolutional Codes9

Convolutional codes are one type of code used for channel coding (Section 6.5). Another type of code used
is block coding (Section 6.5.1: Block codes).

6.6.1 Convolutional codes

In convolutional codes, each block of k bits is mapped into a block of n bits but these n bits are not only
determined by the present k information bits but also by the previous information bits. This dependence
can be captured by a �nite state machine.

Example 6.9
A rate 1

2 convolutional coder k = 1, n = 2 with memory length 2 and constraint length 3.

Figure 6.8

Since the length of the shift register is 2, there are 4 di�erent rates. The behavior of the
convolutional coder can be captured by a 4 state machine. States: 00, 01, 10, 11,

For example, arrival of information bit 0 transitions from state 10 to state 01.
The encoding and the decoding process can be realized in trellis structure.

8"Block Channel Coding" <http://cnx.org/content/m0094/latest/>
9This content is available online at <http://cnx.org/content/m10181/2.7/>.
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Figure 6.9

If the input sequence is

1 1 0 0

the output sequence would be

11 10 10 11

The transmitted codeword is then 11 10 10 11. If there is one error on the channel 11 00 10 11

Figure 6.10

Starting from state 00 the Hamming distance between the possible paths and the received
sequence is measured. At the end, the path with minimum distance to the received sequence is
chosen as the correct trellis path. The information sequence will then be determined.

Convolutional coding lends itself to very e�cient trellis based encoding and decoding. They are very
practical and powerful codes.
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Solutions to Exercises in Chapter 6

Solution to Exercise 6.4.1 (p. 96)

log2

(
1 +

P

ση2

)n
2

(6.45)
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Chapter 7

Chapter 6: Communication over Fading

Channels

7.1 Fading Channel1

For most channels, where signal propagate in the atmosphere and near the ground, the free-space propagation
model is inadequate to describe the channel behavior and predict system performance. In wireless system,
s signal can travel from transmitter to receiver over multiple re�ective paths. This phenomenon, called
multipath fading, can cause �uctuations in the received signal's amplitude, phase, and angle of arrival,
giving rise to the terminology multipath fading. Another name, scintillation, is used to describe the fading
caused by physical changes in the propagating medium, such as variations in the electron density of the
ionosopheric layers that re�ect high frequency radio signals. Both fading and scintillation refer to a signal's
random �uctuations.

7.2 Characterizing Mobile-Radio Propagation2

Characterizing Mobile-Radio Propagation

1This content is available online at <http://cnx.org/content/m15525/1.2/>.
2This content is available online at <http://cnx.org/content/m15528/1.2/>.
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Figure 7.1: Fading channel manifestations

Figure 1 introduces an overview of fading channel. Large-scale fading represents the average power
attenuation or the path loss due to motion over large areas. This phenomenon is a�ected by prominent
terrain contours (e.g. hills, forests, billboards, clumps of buildings, etc) between the transmitter and receiver.
Small-scale fading refers to the dramatic changes in signal amplitude and phase as a result of small changes
(as small as half wavelength) in the spatial positioning between a receiver and transmitter. Small-scale fading
is called Rayleigh fading if there are multiple re�ective paths and no line-of-sight signal component otherwise
it is called Rician. When a mobile radio roams over a large area it must process signals that experience both
types of fading: small-scale fading superimposed on large-scale fading. Large-scale fading (attenuation or
path loss) can be considered as a spatial average over the small-scale �uctuations of the signal.

There are three basic mechanisms that impact signal propagation in a mobile communication system:

1. Re�ection occurs when a propagating electromagnetic wave impinges upon smooth surface with very
large dimensions relative to the RF signal wavelength.

2. Di�raction occurs when the propagation path between the transmitter and receiver is obstructed by a
dense body with dimensions that are large relative to the RF signal wavelength. Di�raction accounts
for RF energy traveling from transmitter to receiver without line-of-sight path. It is often termed
shadowing because the di�racted �eld can reach the receiver even when shadowed by an impenetrable
obstruction.

3. Scattering occurs when a radio wave impinges on either a large, rough surface or any surface whose
dimension are on the other of the RF signal wavelength or less, causing the energy to be spread out or
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re�ected in all directions.

Figure 7.2: Link budget considerations for a fading channel

Figure 2 is a convenient pictorial showing the various contributions that must be considered when estimating
path loss for link budget analysis in a mobile radio application: (1) mean path loss as a function of distance,
due to large-scale fading, (2) near-worst-case variations about the mean path loss or large-scale fading margin
(typically 6-10 dB), (3) near-worst-case Rayleigh or small-scale fading margin (typically 20-30 dB)

Using complex notation
s (t) = Re{g (t) .ej2πfct}(1)
Where Re{.} denotes the real part of {.}, and fc is the carrier frequency. The baseband waveform g (t)

is called the complex envelope of s (t) and can be expressed as
g (t) =| g (t) | .ejφ(t) = R (t) .ejφ(t)(2)
Where R (t) =| g (t) | is the envelope magnitude, and φ (t) is its phase.
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In fading environment, g(t) will be modi�ed by a complex dimentionless multiplicative factor α (t) .e−jθ(t).
The modi�ed baseband waveform can be written as α (t) .e−jθ(t).g (t). The magnitude of this envelope can
be expressed as follow

α (t) .R (t) = m (t) .r0 (t) .R (t)(3)
Where m (t) and r0 (t) are called the large-scale-fading component and the large-scale-fading component

of the envelope respectively.
Sometimes,m (t) is referred to as the local mean or log-normal fading, and r0 (t) is referred to as multipath

or Rayleigh fading.
For the case of mobile radio, �gure 3 illustrates the relationship between α (t) .m (t). In �gure 3a, the

signal power received is a function of the multiplicative factor α (t). Small-scale fading superimposed on large-
scale fading can be readily identi�ed. The typical antenna displacement between adjacent signal-strength
nulls due to small-scale fading is approximately half of wavelength. In �gure 3b, the large-scale fading or
local mean m (t) has been removed in order to view the small-scale fading r0 (t). The log-normal fading is a
relative slow varying function of position, while the Rayleigh fading is a relatively fast varying function of
position.
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Figure 7.3: Large-scale fading and small-scale fading

7.3 Large-Scale Fading3

In general, propagation models for both indoor and outdoor radio channels indicate that mean path loss as
follow

Lp (d)~[U+E09E]d/d0[U+E09F]
n
(1)

Lp (d) dB = Ls (d0) dB + 10n.log (d/d0) (2)

3This content is available online at <http://cnx.org/content/m15526/1.2/>.
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Where d is the distance between transmitter and receiver, and the reference distance d0 corresponds to
a point located in the far �eld of the transmit antenna. Typically, d0 is taken 1 km for large cells, 100 m for
micro cells, and 1 m for indoor channels. Moreover d0 is evaluated using equation

Ls (d0) = [U+E09E] 4πd0
λ [U+E09F]

2
(3)

or by conducting measurement. The value of the path-loss exponent n depends on the frequency, antenna
height and propagation environment. In free space, n is equal to 2. In the presence of a very strong guided
wave phenomenon (like urban streets), n can be lower than 2. When obstructions are present, n is larger.

Measurements have shown that the path loss Lp is a random variable having a log-normal distribution
about the mean distant-dependent value Lp (d)

Lp (d) (dB) = Ls (d0) (dB) + 10nlog10 (d/d0) +Xσ (dB)(4)
Where Xσ denote a zero-mean, Gaussian random variable (in dB) with standard deviation [U+F073] (in

dB). Xσ is site and distance dependent.
As can be seen from the equation, the parameters needed to statistically describe path loss due to large-

scale fading, for an arbitrary location with a speci�c transmitter-receiver separation are (1) the reference
distance, (2) the path-loss exponent, and (3) the standard deviation Xσ.

7.4 Small-Scale Fading4

SMALL - SCALE FADING
Small-scale fading refers to the dramatic changes in signal amplitude and phase that can be experienced

as a result of small changes (as small as half wavelength) in the spatial position between transmitter and
receiver.

In this section, we will develop the small-scale fading component r0 (t). Analysis proceeds on the as-
sumption that the antenna remains within a limited trajectory so that the e�ect of large-scale fading m(t)
is constant. Assume that the antenna is traveling and there are multiple scatter paths, each associated with
a time-variant propagation delay τn (t) and a time variant multiplicative factor αn (t). Neglecting noise, the
received bandpass signal can be written as below:

r (t) =
∑
n αn (t) s (t− τn (t))(1)

Substituting Equation (1, module Characterizing Mobile-Radio Propagation) over into Equation (1), we
can write the received bandpass signal as follow:

r (t)=Re
((∑

n αn (t) g (t− τn (t)) ej2πfc(t−τn(t))
)
(2)

= Re
((∑

n αn (t) e−j2πfcτn(t)g (t− τn (t))
)
ej2πfct

We have the equivalent received bandpass signal is

s (t) =
∑
n αn (t) e−j2πfτn(t)

c g (t− τn (t))(3)
Consider the transmission of an unmodulated carrier at frequency fc or in other words, for all time,

g(t)=1. So the received bandpass signal become as follow:
s (t) =

∑
n αn (t) e−j2πfcτn(t) =

∑
n αn (t) e−jθn(t)(4)

The baseband signal s(t) consists of a sum of time-variant components having amplitudes αn (t) and
phases θn (t). Notice that θn (t) will change by 2π radians whenever τn (t) changes by 1/ fc (very small
delay). These multipath components combine either constructively or destructively, resulting in amplitude
variations of s(t). Final equation is very important because it tell us that a bandpass signal s(t) is the signal
that experienced the fading e�ects and gave rise to the received signal r(t), these e�ects can be described by
analyzing r(t) at the baseband level.

4This content is available online at <http://cnx.org/content/m15531/1.1/>.
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Figure 7.4

When the received signal is made up of multiple re�ective arrays plus a signi�cant line-of-sight (non-
faded) component, the received envelope amplitude has a Rician pdf as below, and the fading is preferred to
as Rician fading

p (r0) = {
r0
σ2 exp

[
− (r20+A2)

2σ2

]
I0
(
r0A
σ2

)
r0 ≥ 0, A ≥ 0

0 otherwise

(5)

The parameter σ2 is the pre-detection mean power of the multipath signal. A denotes the peak magnitude
of the non-faded signal component and I0 (−) is the modi�ed Bessel function. The Rician distribution is often
described in terms of a parameter K, which is de�ned as the ratio of the power in the specular component
to the power in the multipath signal. It is given by K = A2/2σ2.

When the magnitude of the specular component A approach zero, the Rician pdf approachs a Rayleigh
pdf, shown as

p (r0) = {
r0
σ2 exp

[
− r20

2σ2

]
r0 ≥ 0

0 otherwise
(6)

The Rayleigh pdf results from having no specular signal component, it represents the pdf associated with
the worst case of fading per mean received signal power.

Small scale manifests itself in two mechanisms - time spreading of signal (or signal dispersion) and
time-variant behavior of the channel (�gure 2). It is important to distinguish between two di�erent time
references- delay time τ and transmission time t. Delay time refers to the time spreading e�ect resulting
from the fading channel's non-optimum impulse response. The transmission time, however, is related to the
motion of antenna or spatial changes, accounting for propagation path changes that are perceived as the
channel's time-variant behavior.

Available for free at Connexions <http://cnx.org/content/col10474/1.7>



110 CHAPTER 7. CHAPTER 6: COMMUNICATION OVER FADING CHANNELS

Figure 7.5

7.5 Signal Time-Spreading5

SIGNAL TIME � SPREADING
Signal Time-Spreading Viewed in the Time-Delay Domain
A simple way to model the fading phenomenon is proposed the notion wide-sense stationary uncorrelated

scattering. The model treats arriving at a receive antenna with di�erent delay as uncorrelated.
In Figure 1(a), a multipath-intensity pro�le S(τ) is plotted. S(τ) helps us understand how the average

received power vary as a function of time delay τ . The term �time delay� is used to refer to the excess delay.
It represents the signal's propagation delay that exceeds the delay of the �rst signal arrival at the receiver. In
wireless channel, the received signal usually consists of several discrete multipath components causing S(τ).
For a single transmitted impulse, the time Tm between the �rst and last received component represents the
maximum excess delay.

5This content is available online at <http://cnx.org/content/m15533/1.3/>.
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Figure 7.6

Degradation Categories due to Signal Time-Spreading Viewed in the Time-Delay Domain
In a fading channel, the relationship between maximum excess delay time Tm and symbol time Ts can be

viewed in terms of two di�erent degradation categories: frequency-selective fading and frequency nonselective
or �at fading.

A channel is said to exhibit frequency selective fading if Tm > Ts. This condition occurs whenever
the received multipath components of a symbol extend beyond the symbol's time duration. In fact, another
name for this category of fading degradation is channel-induced ISI. In this case of frequency-selective fading,
mitigating the distortion is possible because many of the multipath components are resolved by receiver.

A channel is said to exhibit frequency nonselective or �at fading if Tm < Ts. In this case, all of the
received multipath components of a symbol arrive within the symbol time duration; hence, the components
are not resolvable. There is no channel-induced ISI distortion because the signal time spreading does not
result in signi�cant overlap among neighboring received symbols.

Signal Time-Spreading Viewed in the Frequency Domain
A completely analogous characterization of signal dispersion can be speci�ed in the frequency domain.

In �gure 1b, the spaced-frequency correlation function | R (∆f) | can be seen, it is the Fourier transform of
S(τ). The correlation function | R (∆f) | represents the correlation between the response of channel to two
signals as a function of the frequency di�erence between two signals. The function | R (∆f) | helps answer
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the correlation between received signals that are spaced in the frequency ∆f = f1−f2 is what. | R (∆f) | can
be measured by transmitting a pair of sinusoids separated in frequency by ∆f, cross-correlating the complex
spectra of two separated received signals, and repeating the process many times with ever-larger separation
∆f. Spectral components in that range are a�ected by the channel in a similar manner. Note that the
coherence bandwidth f0 and the maximum excess delay time Tm are related as approximation below

f0 ≈ 1
Tm

(1)
A more useful parameter is the delay spread, most often characterized in terms of its root-mean-square

(rms) value, can be calculated as

στ =
(
τ2 − τ2

)1/2

(2)

Where
Ψ
τ is the mean excess delay,

(
Ψ
τ
)2

is the mean squared, τ2 is the second moment and στ is the

square root of the second central moment of S(τ).
A relationship between coherence bandwidth and delay spread does not exist. However, using Fourier

transform techniques an approximation can be derived from actual signal dispersion measurements in various
channel. Several approximate relationships have been developed.

If the coherence bandwidth is de�ned as the frequency interval over which the channel's complex frequency
transfer function has a correlation of at least 0.9, the coherent bandwidth is approximately

f0 ≈ 1
50στ

(3)
With the dense-scatterer channel model, coherence bandwidth is de�ned as the frequency interval over

which the channel's complex frequency transfer function has a correlation of at least 0.5, to be
f0 ≈ 1

2πστ
(4)

Studies involving ionospheric e�ects often employ the following de�nition
f0 ≈ 1

5στ
(5)

The delay spread and coherence bandwidth are related to a channel's multipath characteristic, di�ering
for di�erent propagation paths. It is important to note that all parameters in last equation independent of
signaling speed, a system's signaling speed only in�uences its transmission bandwidth W.

Degradation Categories due to Signal Time-Spreading Viewed in the Frequency Domain
A channel is preferred to as frequency-selective if f0 < 1/Ts ≈W (the symbol rate is taken to be equal to

the signaling rate or signal bandwidth W). Frequency selective fading distortion occurs whenever a signal's
spectral components are not all a�ected equally by the channel. Some of the signal's spectra components
failing outside the coherent bandwidth will be a�ected di�erently, compared with those components contained
within the coherent bandwidth (Figure 2(a)).

Frequency- nonselective of �at-fading degradation occurs whenever f0 > W . hence, all of signal's spectral
components will be a�ected by the channel in a similar manner (fading or non-fading) (Figure 2(b)). Flat
fading does not introduce channel-induced ISI distortion, but performance degradation can still be expected
due to the loss in SNR whenever the signal is fading. In order to avoid channel-induced ISI distortion, the
channel is required to exhibit �at fading. This occurs, provide that

f0 > W ≈ 1
Ts

(6)
Hence, the channel coherent bandwidth f0 set an upper limit on the transmission rate that can be used

without incorporating an equalizer in the receiver.
However, as a mobile radio changes its position, there will be times when the received signal experiences

frequency-selective distortion even though f0 > W (in Figure 2(c)). When this occurs, the baseband pulse
can be especially mutilated by deprivation of its low-frequency components. Thus, even though a channel is
categorized as �at-fading, it still manifests frequency-selective fading.

Available for free at Connexions <http://cnx.org/content/col10474/1.7>



113

Figure 7.7

Examples of Flat Fading and Frequency-Selective Fading
The signal dispersion manifestation of the fading channel is analogous to the signal spreading that charac-
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terizes an electronic �lter. Figure 3(a) depicts a wideband �lter (narrow impulse response) and its e�ect on a
signal in both time domain and the frequency domain. This �lter resembles a �at-fading channel yielding an
output that is relatively free of dispersion. Figure 3(b) shows a narrowband �lter (wide impulse response).
The output signal su�ers much distortion, as shown both time domain and frequency domain. Here the
process resembles a frequency-selective channel.

Figure 7.8
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7.6 Mitigating the Degradation E�ects of Fading6

Figure 1 highlights three major performance categories in terms of bit-error probability PBversus Eb/N0

6This content is available online at <http://cnx.org/content/m15535/1.1/>.
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Figure 7.9

The leftmost exponentially shaped curve highlights the performance that can be expected when using
any nominal modulation scheme in AWGN interference. Observe that at a reasonable Eb/N0 level, good
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performance can be expected.
The middle curve, referred to as the Rayleigh limit, shows the performance degradation resulting

from a loss in Eb/N0 that is characteristic of �at fading or slow fading when there is no line-of-sight signal
component present. The curve is a function of the reciprocal of Eb/N0, so for practical values of Eb/N0,
performance will generally be �bad.�

The curve that reaches an irreducible error-rate level, sometimes called an error �oor, represents �awful�
performance, where the bit-error probability can level o� at values nearly equal to 0.5. This shows the severe
performance degrading e�ects that are possible with frequency-selective fading or fast fading.

If the channel introduces signal distortion as a result of fading, the system performance can exhibit an
irreducible error rate at a level higher than the desired error rate. In such cases, the only approach available
for improving performance is to use some forms of mitigation to remove or reduce the signal distortion.

The mitigation method depends on whether the distortion is caused by frequency-selective fading or fast
fading. Once the signal distortion has been mitigated, the PB versus Eb/N0 performance can transition from
the �awful� category to the merely �bad� Rayleigh-limit curve.

Next, it is possible to further ameliorate the e�ects of fading and strive to approach AWGN system
performance by using some form of diversity to provide the receiver with a collection of uncorrelated replicas
of the signal, and by using a powerful error-correction code.

Figure 2 lists several mitigation techniques for combating the e�ects of both signal distortion and loss
in SNR. The mitigation approaches to be used when designing a system should be considered in two basic
steps:

1) choose the type of mitigation to reduce or remove any distortion degradation;
2) choose a diversity type that can best approach AWGN system performance.
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Figure 7.10

7.7 Mitigation to Combat Frequency-Selective Distortion7

Equalization can mitigate the e�ects of channel-induced ISI brought on by frequency-selective fading. It can
help modify system performance described by the curve that is �awful� to the one that is merely �bad.� The
process of equalizing for mitigating ISI e�ects involves using methods to gather the dispersed symbol energy
back into its original time interval.

An equalizer is an inverse �lter of the channel. If the channel is frequency selective, the equalizer enhances
the frequency components with small amplitudes and attenuates those with large amplitudes. The goal is
for the combination of channel and equalizer �lter to provide a �at composite-received frequency response
and linear phase.

Because the channel response varies with time, the equalizer �lters must be adaptive equalizers.
The decision feedback equalizer (DFE) involves:
1) a feedforward section that is a linear transversal �lter whose stage length and tap weights are selected

to coherently combine virtually all of the current symbol's energy.
2) a feedback section that removes energy remaining from previously detected symbols.
The basic idea behind the DFE is that once an information symbol has been detected, the ISI that it

induces on future symbols can be estimated and subtracted before the detection of subsequent symbols.

7This content is available online at <http://cnx.org/content/m15537/1.1/>.
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A maximum-likelihood sequence estimation (MLSE) equalizer: tests all possible data sequences
and chooses the data sequence that is the most probable of all the candidates. The MLSE is optimal in the
sense that it minimizes the probability of a sequence error. Since the MLSE equalizer is implemented by
using Viterbi decoding algorithm, it is often referred to as the Viterbi equalizer.

Direct-sequence spread-spectrum (DS/SS) techniques can be used to mitigate frequency-selective
ISI distortion because the hallmark of spread-spectrum systems is their capability of rejecting interference,
and ISI is a type of interference.

Consider a DS/SS binary phase-shift keying (PSK) communication channel comprising one direct path
and one re�ected path. Assume that the propagation from transmitter to receiver results in a multipath
wave that is delayed by τ compared to the direct wave. The received signal, r (t), neglecting noise, can be
expressed as follows:

r (t) = Ax (t) g (t) cos (2πf ct) + αAx (t− τ) g (t− τ) cos (2πf ct+ θ)
where x (t) is the data signal, g (t) is the pseudonoise (PN) spreading code, and τ is the di�erential

time delay between the two paths. The angle θ is a random phase, assumed to be uniformly distributed in
the range (0, 2π), and α is the attenuation of the multipath signal relative to the direct path signal.

The receiver multiplies the incoming r (t) by the code g (t). If the receiver is synchronized to the direct
path signal, multiplication by the code signal yields the following:

r (t) g (t) = Ax (t) g2 (t) cos (2πf ct) + αAx (t− τ) g (t) g (t− τ) cos (2πf ct+ θ)
where g2 (t) = 1. If τ is greater than the chip duration, then
|
∫
g (t) g (t− τ) dt |≤|

∫
g2 (t)dt |

over some appropriate interval of integration (correlation). Thus, the spread spectrum system e�ectively
eliminates the multipath interference by virtue of its code-correlation receiver. Even though channel-induced
ISI is typically transparent to DS/SS systems, such systems su�er from the loss in energy contained in the
multipath components rejected by the receiver. The need to gather this lost energy belonging to a received
chip was the motivation for developing the Rake receiver.

A channel that is classi�ed as �at fading can occasionally exhibit frequency-selective distortion when the
null of the channel's frequency-transfer function occurs at the center of the signal band. The use of DS/SS
is a practical way of mitigating such distortion because the wideband SS signal can span many lobes of
the selectively faded channel frequency response. This requires the spread-spectrum bandwidth Wss (or the
chip rate Rch), to be greater than the coherence bandwidth f0. The larger the ratio of Wss to f0, the more
e�ective will be the mitigation.

Frequency-hopping spread-spectrum (FH/SS): can be used to mitigate the distortion caused by
frequency-selective fading, provided that the hopping rate is at least equal to the symbol rate. FH receivers
avoid the degradation e�ects due to multipath by rapidly changing in the transmitter carrier-frequency band,
thus avoiding the interference by changing the receiver band position before the arrival of the multipath signal.

Orthogonal frequency-division multiplexing (OFDM): can be used for signal transmission in
frequency-selective fading channels to avoid the use of an equalizer by lengthening the symbol duration. The
approach is to partition (demultiplex) a high symbol-rate sequence into N symbol groups, so that each group
contains a sequence of a lower symbol rate (by the factor 1/N) than the original sequence. The signal band
is made up of N orthogonal carrier waves, and each one is modulated by a di�erent symbol group. The
goal is to reduce the symbol rate (signaling rate), W ≈ 1/Ts, on each carrier to be less than the channel's
coherence bandwidth f0.

Pilot signal is the name given to a signal intended to facilitate the coherent detection of waveforms.
Pilot signals can be implemented in the frequency domain as in-band tones, or in the time domain as digital
sequences that can also provide information about the channel state and thus improve performance in fading
conditions.
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7.8 Mitigation to Combat Fast-Fading Distortion8

• For fast-fading distortion, use a robust modulation (non-coherent or di�erentially coherent) that does
not require phase tracking, and reduces the detector integration time.

• Increase the symbol rate, W ≈ 1/Ts, to be greater than the fading rate, fd ≈ 1/T0, by adding signal
redundancy.

• Error-correction coding and interleaving can provide mitigation, because instead of providing more
signal energy, a code reduces the required Eb/N0. For a given Eb/N0 with coding present, the error
�oor will be lowered compared to the uncoded case.

When fast-fading distortion and frequency-selective distortion occur simultaneously, the frequency-selective
distortion can be mitigated by the use of an OFDM signal set. Fast fading, however, will typically degrade
conventional OFDM because the Doppler spreading corrupts the orthogonality of the OFDM subcarriers. A
polyphase �ltering technique is used to provide time-domain shaping and partial-response coding to reduce
the spectral sidelobes of the signal set, and thus help preserve its orthogonality. The process introduces
known ISI and adjacent channel interference (ACI) which are then removed by a post-processing equalizer
and canceling �lter.

7.9 Mitigation to Combat Loss in SNR9

Until this point, we have considered the mitigation to combat frequency-selective and fast-fading distortions.
The next step is to use diversity methods to move the system operating point from the error-performance
curve labeled as �bad� to a curve that approaches AWGN performance. The term diversity is used to denote
the various methods available for providing the receiver with uncorrelated renditions of the signal of interest.
Some of the ways in which diversity methods can be implemented are:
• Time diversity: transmit the signal on L di�erent time slots with time separation of at least T0.

When used along with error-correction coding, interleaving is a form of time diversity.
• Frequency diversity: transmit the signal on L di�erent carriers with frequency separation of at least

f0. Bandwidth expansion is a form of frequency diversity. The signal bandwidth W is expanded so as to be
greater than f0, thus providing the receiver with several independently-fading signal replicas. This achieves
frequency diversity of the order L = W/f0.

Whenever W is made larger than f0, there is the potential for frequency-selective distortion unless
mitigation in the form of equalization is provided.

Thus, an expanded bandwidth can improve system performance (via diversity) only if the frequency-
selective distortion that the diversity may have introduced is mitigated.
• Spread spectrum: In spread-spectrum systems, the delayed signals do not contribute to the fading,

but to interchip interference. Spread spectrum is a bandwidth-expansion technique that excels at rejecting
interfering signals. In the case of Direct-Sequence Spread-Spectrum (DS/SS), multipath components
are rejected if they are time-delayed by more than the duration of one chip. However, in order to approach
AWGN performance, it is necessary to compensate for the loss in energy contained in those rejected compo-
nents. The Rake receiver makes it possible to coherently combine the energy from several of the multipath
components arriving along di�erent paths (with su�cient di�erential delay).
• Frequency-hopping spread-spectrum (FH/SS) is sometimes used as a diversity mechanism. The

GSM system uses slow FH (217 hops/s) to compensate for cases in which the mobile unit is moving very
slowly (or not at all) and experiences deep fading due to a spectral null.
• Spatial diversity is usually accomplished through the use of multiple receive antennas, separated by

a distance of at least 10 wavelengths when located at a base station (and less when located at a mobile unit).
Signal-processing techniques must be employed to choose the best antenna output or to coherently combine
all the outputs. Systems have also been implemented with multiple transmitters, each at a di�erent location.

8This content is available online at <http://cnx.org/content/m15536/1.1/>.
9This content is available online at <http://cnx.org/content/m15538/1.1/>.
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• Polarization diversity is yet another way to achieve additional uncorrelated samples of the signal.
• Some techniques for improving the loss in SNR in a fading channel are more e�cient and more powerful

than repetition coding.
Error-correction coding represents a unique mitigation technique, because instead of providing more

signal energy it reduces the required Eb/N0 needed to achieve a desired performance level. Error-correction
coding coupled with interleaving is probably the most prevalent of the mitigation schemes used to provide
improved system performance in a fading environment.

7.10 Diversity Techniques10

This section shows the error-performance improvements that can be obtained with the use of diversity
techniques.

The bit-error-probability, PB , averaged through all the �ups and downs� of the fading experience in a
slow-fading channel is as follows:

PB =
∫
PB (x) p (x) dx

where PB (x) is the bit-error probability for a given modulation scheme at a speci�c value of SNR = x,
where x = α2Eb/N0, and p (x) is the pdf of x due to the fading conditions. With Eb and N0 constant, α is
used to represent the amplitude variations due to fading.

For Rayleigh fading, α has a Rayleigh distribution so that α2, and consequently x, have a chi-
squared distribution:

p (x) = 1
Γexp

(
− x

Γ

)
x ≥ 0

where Γ = α2Eb/N0 is the SNR averaged through the �ups and downs� of fading. If each diversity
(signal) branch, i = 1, 2, ...,M , has an instantaneous SNR = γi, and we assume that each branch has the
same average SNR given by Γ, then

p (γi) = 1
Γexp

(
−γiΓ

)
γi ≥ 0

The probability that a single branch has SNR less than some threshold γ is:
P (γi ≤ γ) =

∫ γ
0
p (γi) dγi =

∫ γ
0

1
Γexp

(
−γiΓ

)
dγi

= 1− exp
(
− γ

Γ

)
The probability that all M independent signal diversity branches are received simultaneously with an

SNR less than some threshold value γ is:

P (γ1, ..., γM ≤ γ) =
[
1− exp

(
− γ

Γ

)]M
The probability that any single branch achieves SNR > γ is:

P (γi > γ) = 1−
[
1− exp

(
− γ

Γ

)]M
This is the probability of exceeding a threshold when selection diversity is used.
Example: Bene�ts of Diversity
Assume that four-branch diversity is used, and that each branch receives an independently Rayleigh-

fading signal. If the average SNR is Γ = 20 dB, determine the probability that all four branches are received
simultaneously with an SNR less than 10 dB (and also, the probability that this threshold will be exceeded).

Compare the results to the case when no diversity is used.
Solution
With γ = 10 dB, and γ/Γ = 10 dB− 20 dB = −10 dB = 0.1, we solve for the probability that the
SNR will drop below 10 dB, as follows:
P (γ1, γ2, γ3, γ4 ≤ 10 dB) = [1− exp (−0.1)]4 = 8.2× 10−5

or, using selection diversity, we can say that
P (γi > 10 dB) = 1− 8.2× 10−5 = 0.9999
Without diversity,
P (γ1 ≤ 10 dB) = [1− exp (−0.1)]1 = 0.095
P (γ1 > 10 dB) = 1− 0.095 = 0.905

10This content is available online at <http://cnx.org/content/m15540/1.1/>.
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7.11 Diversity-Combining Techniques11

The most common techniques for combining diversity signals are selection, feedback, maximal ratio,
and equal gain.

Selection combining used in spatial diversity systems involves the sampling of M antenna signals, and
sending the largest one to the demodulator. Selection-diversity combining is relatively easy to implement
but not optimal because it does not make use of all the received signals simultaneously.

With feedback or scanning diversity, theM signals are scanned in a �xed sequence until one is found that
exceeds a given threshold. This one becomes the chosen signal until it falls below the established threshold,
and the scanning process starts again. The error performance of this technique is somewhat inferior to the
other methods, but feedback is quite simple to implement.

In maximal-ratio combining, the signals from all of the M branches are weighted according to their
individual SNRs and then summed. The individual signals must be cophased before being summed.

Maximal-ratio combining produces an average SNR γM equal to the sum of the individual average SNRs,
as shown below:

γM =
∑M
i=1 γi =

∑M
i=1 Γ = MΓ

where we assume that each branch has the same average SNR given by γi = Γ.
Thus, maximal-ratio combining can produce an acceptable average SNR, even when none of the individual

i γ is acceptable. It uses each of the M branches in a cophased and weighted manner such that the largest
possible SNR is available at the receiver.

Equal-gain combining is similar to maximal-ratio combining except that the weights are all set to unity.
The possibility of achieving an acceptable output SNR from a number of unacceptable inputs is still retained.
The performance is marginally inferior to maximal ratio combining.

7.12 Modulation Types for Fading Channels12

An amplitude-based signaling scheme such as amplitude shift keying (ASK) or quadrature amplitude
modulation (QAM) is inherently vulnerable to performance degradation in a fading environment. Thus,
for fading channels, the preferred choice for a signaling scheme is a frequency or phase-based modulation
type.

In considering orthogonal FSK modulation for fading channels, the use of MFSK with M = 8 or larger
is useful because its error performance is better than binary signaling. In slow Rayleigh fading channels,
binary DPSK and 8-FSK perform within 0.1 dB of each other.

In considering PSK modulation for fading channels, higher-order modulation alphabets perform poorly.
MPSK with M = 8 or larger should be avoided.

Example: Phase Variations in a Mobile Communication System
The Doppler spread fd = V/λ shows that the fading rate is a direct function of velocity. Table 1 shows

the Doppler spread versus vehicle speed at carrier frequencies of 900 MHz and 1800 MHz. Calculate the
phase variation per symbol for the case of signaling withQPSKmodulation at the rate of 24.3 kilosymbols/s.

Assume that the carrier frequency is 1800 MHz and that the velocity of the vehicle is 50 miles/hr (80
km/hr). Repeat for a vehicle speed of 100 miles/hr.
Table 1

11This content is available online at <http://cnx.org/content/m15541/1.1/>.
12This content is available online at <http://cnx.org/content/m15539/1.1/>.
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Velocity Doppler (Hz) Doppler (Hz)

miles/hr km/hr 900 Mhz (λ = 33cm) 1800 Mhz (λ = 16.6cm)

3 5 4 8

20 32 27 54

50 60 66 132

80 108 106 212

120 192 160 320

Table 7.1

Solution
At a velocity of 100 miles/hr:
∆θ/symbol = fd

Rt
× 360o

= 132Hz
24.3×103 symbols/s × 360o

= 2o/symbol
At a velocity of 100 miles/hr: ∆θ/symbol = 4o/symbol
Thus, it should be clear why MPSK with a value of M > 4 is not generally used to transmit information

in a multipath environment.

7.13 The Role of an Interleaver13

The primary bene�t of an interleaver for transmission in fading environment is to provide time diversity
(when used along with error-correction coding).

Figure 1 illustrates the bene�ts of providing an interleaver time span TIL, that is large compared to the
channel coherence time T0, for the case of DBPSK modulation with soft-decision decoding of a rate 1/2,
K = 7 convolutional code, over a slow Rayleigh-fading channel.

13This content is available online at <http://cnx.org/content/m15542/1.1/>.
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Figure 7.11
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It should be apparent that an interleaver having the largest ratio of TIL/T0 is the best-performing (large
demodulated BER leading to small decoded BER). This leads to the conclusion that TIL/T0 should be some
large number�say 1,000 or 10,000. However, in a real-time communication system this is not possible
because the inherent time delay associated with an interleaver would be excessive.

The previous section shows that for a cellular telephone system with a carrier frequency of 900 MHz, a
TIL/T0 ratio of 10 is about as large as one can implement without su�ering excessive delay.

Note that the interleaver provides no bene�t against multipath unless there is motion between the trans-
mitter and receiver (or motion of objects within the signal-propagating paths). The system error-performance
over a fading channel typically degrades with increased speed because of the increase in Doppler spread or
fading rapidity. However, the action of an interleaver in the system provides mitigation, which becomes more
e�ective at higher speeds

Figure 2 show that communications degrade with increased speed of the mobile unit (the fading rate
increases), the bene�t of an interleaver is enhanced with increased speed. This is the results of �eld testing
performed on a CDMA system meeting the Interim Speci�cation 95 (IS-95) over a link comprising a
moving vehicle and a base station.

Figure 7.12

Typical Eb/N0 performance versus vehicle speed for 850 MHz links to achieve a frame-error rate of 1
percent over a Rayleigh channel with two independent paths

.
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7.14 Application of Viterbi Equalizer in GSM System14

The GSM time-division multiple access (TDMA) frame in Figure 1 has duration of 4.615 ms and
comprising 8 slots, one assigned to each active mobile user. A normal transmission burst occupying one time
slot contains 57 message bits on each side of a 26-bit midamble, called a training or sounding sequence.
The slot-time duration is 0.577 ms (or the slot rate is 1733 slots/s). The purpose of the midamble is to assist
the receiver in estimating the impulse response of the channel adaptively (during the time duration of each
0.577 ms slot). For the technique to be e�ective, the fading characteristics of the channel must not change
appreciably during the time interval of one slot.

Figure 7.13

Consider a GSM receiver used aboard a high-speed train, traveling at a constant velocity of 200 km/hr
(55.56 m/s). Assume the carrier frequency to be 900 MHz (the wavelength is λ = 0.33 m). The distance

corresponding to a half-wavelength is traversed in T0 ≈ λ/2
V ≈ 3 corresponds approximately to the coherence

time. Therefore, the channel coherence time is more than �ve times greater than the slot time of 0.577 ms.
The time needed for a signi�cant change in channel fading characteristics is relatively long compared to the
time duration of one slot.

The GSM symbol rate (or bit rate, since the modulation is binary) is 271 kilosymbols/s; the bandwidth,
W, is 200 kHz. Since the typical rms delay spread στ in an urban environment is on the order of 2µs, then
the resulting coherence bandwidth:

f0 ≈ 1
5στ
≈ 100 kHz

Since f0 < W , the GSM receiver must utilize some form of mitigation to combat frequency-selective
distortion. To accomplish this goal, the Viterbi equalizer is typically implemented.

14This content is available online at <http://cnx.org/content/m15544/1.1/>.
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Figure 2 shows the basic functional blocks used in a GSM receiver for estimating the channel impulse
response.

Figure 7.14

This estimate is used to provide the detector with channel-corrected reference waveforms as explained
below: (the Viterbi algorithm is used in the �nal step to compute the MLSE of the message bits)

Let str (t) be the transmitted midamble training sequence, and rtr (t) be the corresponding received
midamble training sequence. We have:

rtr (t) = str (t) ∗ hc (t)
At the receiver, since rtr (t) is part of the received normal burst, it is extracted and sent to a �lter having

impulse response hmf (t) , that is matched to str (t). This matched �lter yields at its output an estimate of
hc (t), denoted he (t):

he (t) = rtr (t) ∗ hmf (t)
= str (t) ∗ hc (t) ∗ hmf (t)
where Rs (t) = str (t) ∗ hmf (t) is the autocorrelation function of str (t). If str (t) is designed to have a

highly-peaked (impulse-like) autocorrelation function Rs (t), then he (t) ≈ hc (t).
Next, we use a windowing function, w (t), to truncate he (t) to form a computationally a�ordable function,

hw (t). The time duration of w (t), denoted L0, must be large enough to compensate for the e�ect of typical
channel-induced ISI. The term L0 consists of the sum of two contributions, namely LCISI, corresponding to
the controlled ISI caused by Gaussian �ltering of the baseband waveform (which then modulates the carrier
using MSK), and LC , corresponding to the channel-induced ISI caused by multipath propagation. Thus,

L0 = LCISI + LC
The GSM system is required to provide distortion mitigation caused by signal dispersion having delay

spreads of approximately 15�20 µs. Since in GSM the bit duration is 3.69 µs, we can express L0 in units of
bit intervals. Thus, the Viterbi equalizer used in GSM has a memory of 4�6 bit intervals. For each L0-bit
interval in the message, the function of the Viterbi equalizer is to �nd the most likely L0-bit sequence out
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of the 2L0 possible sequences that might have been transmitted.
Determining the most likely transmitted L0-bit sequence requires that 2L0 meaningful reference waveforms

be created by disturbing) the 2L0 ideal waveforms (generated at the receiver) in the same way that the
channel has disturbed the transmitted slot. Therefore, the 2L0 reference waveforms are convolved with the
windowed estimate of the channel impulse response, hw (t) in order to generate the disturbed or so-called
channel-corrected reference waveforms.

Next, the channel-corrected reference waveforms are compared against the received data waveforms to
yield metric calculations. However, before the comparison takes place, the received data waveforms are
convolved with the known windowed autocorrelation function w (t)Rs (t), transforming them in a manner
comparable to the transformation applied to the reference waveforms. This �ltered message signal is com-
pared to all possible 2L0 channel-corrected reference signals, and metrics are computed in a manner similar
to that used in the Viterbi decoding algorithm. It yields the maximum likelihood estimate of the
transmitted data sequence.

7.15 Application of Rake Receiver in CDMA System15

Interim Speci�cation 95 (IS-95) describes a Direct-Sequence Spread-Spectrum (DS/SS) cellular system
that uses a Rake receiver to provide path diversity for mitigating the e�ects of frequency-selective fading.
The Rake receiver searches through the di�erent multipath delays for code correlation and thus recovers
delayed signals that are then optimally combined with the output of other independent correlators.

Figure 1 show the power pro�les associated with the �ve chip transmissions of the code sequence 1 0 1
1 1. Each abscissa shows three components arriving with delays τ1, τ2, and τ3. Assume that the intervals
between the transmission times ti and the intervals between the delay times τi are each one chip in duration.
The component arriving at the receiver at time t−4, with delay τ3, is time-coincident with two others, namely
the components arriving at times t−3 and t−2 with delays τ2 and τ1 respectively. Since in this example the
delayed components are separated by at least one chip time, they can be resolved.

15This content is available online at <http://cnx.org/content/m15534/1.2/>.
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Figure 7.15

At the receiver, there must be a sounding device dedicated to estimating the τi delay times. Note that the
fading rate in mobile radio system is relatively slow (in the order of milliseconds) or the channel coherence
time large compared to the chip time duration ( T0 > Tch). Hence, the changes in τi occur slowly enough
that the receiver can readily adapt to them.

Once the τi delays are estimated, a separate correlator is dedicated to recovering each resolvable multipath
component. In this example, there would be three such dedicated correlators, each one processing a delayed
version of the same chip sequence 1 0 1 1 1. Each correlator receives chips with power pro�les represented by
the sequence of components shown along a diagonal line. For simplicity, the chips are all shown as positive
signaling elements. In reality, these chips form a pseudonoise (PN) sequence, which of course contains
both positive and negative pulses. Each correlator attempts to correlate these arriving chips with the same
appropriately synchronized PN code. At the end of a symbol interval (typically there may be hundreds
or thousands of chips per symbol), the outputs of the correlators are coherently combined, and a symbol
detection is made.

The interference-suppression capability of DS/SS systems stems from the fact that a code sequence
arriving at the receiver time-shifted by merely one chip will have very low correlation to the particular PN
code with which the sequence is correlated. Therefore, any code chips that are delayed by one or more chip
times will be suppressed by the correlator. The delayed chips only contribute to raising the interference level
(correlation sidelobes).

The mitigation provided by the Rake receiver can be termed path diversity, since it allows the energy of
a chip that arrives via multiple paths to be combined coherently. Without the Rake receiver, this energy
would be transparent and therefore lost to the DS/SS receiver.
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Glossary

A antipodal

Signals s1 (t) and s2 (t) are antipodal if ∀t, t ∈ [0, T ] : (s2 (t) = −s1 (t))

Autocorrelation

The autocorrelation function of the random process Xt is de�ned as

RX (t2, t1) = E
[
Xt2Xt1

]
=


∫∞
−∞

∫∞
−∞ x2x1f Xt2 ,Xt1 (x2, x1 ) dx 1dx 2 if continuous∑∞

k=−∞
∑∞
l=−∞ xlxkp Xt2 ,Xt1 (xl, xk ) if discrete

(2.50)

Autocovariance

Autocovariance of a random process is de�ned as

CX (t2, t1) = E
[
(Xt2 − µX (t2))Xt1 − µX (t1)

]
= RX (t2, t1)− µX (t2)µX (t1)

(2.60)

B biorthogonal

Signals s1 (t), s2 (t),. . ., sM (t) are biorthogonal if s1 (t),. . ., sM
2

(t) are orthogonal and
sm (t) = −sM

2 +m (t) for some m ∈
{

1, 2, . . . , M2
}
.

C Conditional Entropy

The conditional entropy of the random variable X given the random variable Y is de�ned by

H (X|Y ) = −
∑
ii

∑
jj

p X,Y (xi, yj ) logpX|Y (xi|yj) (3.8)

Continuous Random Variable

A random variable X is continuous if the cumulative distribution function can be written in an
integral form, or

F X (b ) =
∫ b

−∞
f X (x ) dx (2.14)

and f X (x ) is the probability density function (pdf) (e.g., F X (x ) is di�erentiable and
f X (x ) = d

dx (F X (x )))

Crosscorrelation

The crosscorrelation function of a pair of random processes is de�ned as

RXY (t2, t1) = E
[
Xt2Yt1

]
=

∫∞
−∞

∫∞
−∞ xyf Xt2 ,Yt1 (x, y ) dxdy

(2.61)

CXY (t2, t1) = RXY (t2, t1)− µX (t2)µY (t1) (2.62)
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Cumulative distribution

The cumulative distribution function of a random variable X is a function F X (R 7→ R ) such
that

F X (b ) = Pr [X ≤ b]
= Pr [{ω ∈ Ω | X (ω) ≤ b}]

(2.13)

D Discrete Random Variable

A random variable X is discrete if it only takes at most countably many points (i.e., F X ( · ) is
piecewise constant). The probability mass function (pmf) is de�ned as

p X (xk ) = Pr [X = xk]

= F X (xk )− limit
x(x→xk) ∧ (x<xk)

F X (x )
(2.15)

E Entropy Rate

The entropy rate of a stationary discrete-time random process is de�ned by

H = limit
n→∞

H (Xn|X1X2 . . . Xn) (3.12)

The limit exists and is equal to

H = limit
n→∞

1
n
H (X1, X2, . . . , Xn) (3.13)

The entropy rate is a measure of the uncertainty of information content per output symbol of
the source.

Entropy

1. The entropy (average self information) of a discrete random variable X is a function of its
probability mass function and is de�ned as

H (X) = −
N∑
i=1

p X (xi ) logp X (xi ) (3.3)

where N is the number of possible values of X and p X (xi ) = Pr [X = xi]. If log is base 2
then the unit of entropy is bits. Entropy is a measure of uncertainty in a random variable and a
measure of information it can reveal.

2. A more basic explanation of entropy is provided in another module16.

F First-order stationary process

If FXt (b) is not a function of time then Xt is called a �rst-order stationary process.

G Gaussian process

A process with mean µX (t) and covariance function CX (t2, t1) is said to be a Gaussian process

if any X = (Xt1 , Xt2 , . . . , XtN )T formed by any sampling of the process is a Gaussian random
vector, that is,

fX (x) =
1

(2π)
N
2 (detΣX)

1
2
e−( 1

2 (x−µX)TΣX
−1(x−µX)) (2.63)

16"Entropy" <http://cnx.org/content/m0070/latest/>
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for all x ∈ Rn where

µX =


µX (t1)

...

µX (tN )


and

ΣX =


CX (t1, t1) . . . CX (t1, tN )

...
. . .

CX (tN , t1) . . . CX (tN , tN )


. The complete statistical properties of Xt can be obtained from the second-order statistics.

J Joint Entropy

The joint entropy of two discrete random variables (X, Y ) is de�ned by

H (X,Y ) = −
∑
ii

∑
jj

p X,Y (xi, yj ) logp X,Y (xi, yj ) (3.6)

Jointly Wide Sense Stationary

The random processes Xt and Yt are said to be jointly wide sense stationary if RXY (t2, t1) is a
function of t2 − t1 only and µX (t) and µY (t) are constant.

M Mean

The mean function of a random process Xt is de�ned as the expected value of Xt for all t's.

µXt = E [Xt]

=


∫∞
−∞ xf Xt (x ) dx if continuous∑∞
k=−∞ xkp Xt (xk ) if discrete

(2.49)

Mutual Information

The mutual information between two discrete random variables is denoted by I (X;Y ) and
de�ned as

I (X;Y ) = H (X)−H (X|Y ) (6.7)

Mutual information is a useful concept to measure the amount of information shared between
input and output of noisy channels.

O orthogonal

Signals s1 (t), s2 (t),. . ., sM (t) are orthogonal if < sm, sn >= 0 for m 6= n.

P Power Spectral Density

The power spectral density function of a wide sense stationary (WSS) process Xt is de�ned to be
the Fourier transform of the autocorrelation function of Xt.

SX (f) =
∫ ∞
−∞

RX (τ) e−(i2πfτ)dτ (2.84)

if Xt is WSS with autocorrelation function RX (τ).
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S Simplex signals

Let {s1 (t) , s2 (t) , . . . , sM (t)} be a set of orthogonal signals with equal energy. The signals
s̃1 (t),. . ., ˜sM (t) are simplex signals if

s̃m (t) = sm (t)− 1
M

M∑
k=1

sk (t) (4.3)

Stochastic Process

Given a sample space, a stochastic process is an indexed collection of random variables de�ned
for each ω ∈ Ω.

∀t, t ∈ R : (Xt (ω)) (2.30)

U Uncorrelated random variables

Two random variables X and Y are uncorrelated if ρXY = 0.

WWide Sense Stationary

A process is said to be wide sense stationary if µX is constant and RX (t2, t1) is only a function
of t2 − t1.
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