
From Wikipedia, the free encyclopedia

A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to
detect accidental changes to raw data. Blocks of data entering these systems get a short check value attached, based on the
remainder of a polynomial division of their contents; on retrieval the calculation is repeated, and corrective action can be
taken against presumed data corruption if the check values do not match.

CRCs are so called because the check (data verification) value is a redundancy (it expands the message without adding
information) and the algorithm is based on cyclic codes. CRCs are popular because they are simple to implement in binary
hardware, easy to analyze mathematically, and particularly good at detecting common errors caused by noise in
transmission channels. Because the check value has a fixed length, the function that generates it is occasionally used as a
hash function.

The CRC was invented by W. Wesley Peterson in 1961; the 32-bit CRC function of Ethernet and many other standards is
the work of several researchers and was published in 1975.

1 Introduction

2 Application

3 Data integrity

4 Computation

5 Mathematics

5.1 Designing polynomials

6 Specification

7 Standards and common use

8 Implementations

9 See also

10 References

11 External links

CRCs are based on the theory of cyclic error-correcting codes. The use of systematic cyclic codes, which encode messages
by adding a fixed-length check value, for the purpose of error detection in communication networks, was first proposed by
W. Wesley Peterson in 1961.[1] Cyclic codes are not only simple to implement but have the benefit of being particularly
well suited for the detection of burst errors, contiguous sequences of erroneous data symbols in messages. This is important
because burst errors are common transmission errors in many communication channels, including magnetic and optical
storage devices. Typically an n-bit CRC applied to a data block of arbitrary length will detect any single error burst not
longer than n bits and will detect a fraction 1 − 2−n of all longer error bursts.

Specification of a CRC code requires definition of a so-called generator polynomial. This polynomial becomes the divisor
in a polynomial long division, which takes the message as the dividend and in which the quotient is discarded and the
remainder becomes the result. The important caveat is that the polynomial coefficients are calculated according to the
arithmetic of a finite field, so the addition operation can always be performed bitwise-parallel (there is no carry between
digits). The length of the remainder is always less than the length of the generator polynomial, which therefore determines
how long the result can be.

In practice, all commonly used CRCs employ the Galois field of two elements, GF(2). The two elements are usually called
0 and 1, comfortably matching computer architecture.

Cyclic redundancy check - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Cyclic_redundancy_check

1 of 11 24. 11. 2014 17:09

A CRC is called an n-bit CRC when its check value is n bits. For a given n, multiple CRCs are possible, each with a
different polynomial. Such a polynomial has highest degree n, which means it has n + 1 terms. In other words, the
polynomial has a length of n + 1; its encoding requires n + 1 bits. Note that most polynomial specifications either drop the
MSB or LSB bit, since they are always 1. The CRC and associated polynomial typically have a name of the form
CRC-n-XXX as in the table below.

The simplest error-detection system, the parity bit, is in fact a trivial 1-bit CRC: it uses the generator polynomial x + 1 (two
terms), and has the name CRC-1.

A CRC-enabled device calculates a short, fixed-length binary sequence, known as the check value or CRC, for each block
of data to be sent or stored and appends it to the data, forming a codeword. When a codeword is received or read, the
device either compares its check value with one freshly calculated from the data block, or equivalently, performs a CRC on
the whole codeword and compares the resulting check value with an expected residue constant. If the check values do not
match, then the block contains a data error. The device may take corrective action, such as rereading the block or
requesting that it be sent again. Otherwise, the data is assumed to be error-free (though, with some small probability, it may
contain undetected errors; this is the fundamental nature of error-checking).[2]

CRCs are specifically designed to protect against common types of errors on communication channels, where they can
provide quick and reasonable assurance of the integrity of messages delivered. However, they are not suitable for
protecting against intentional alteration of data.

Firstly, as there is no authentication, an attacker can edit a message and recompute the CRC without the substitution being
detected. When stored alongside the data, CRCs and cryptographic hash functions by themselves do not protect against
intentional modification of data. Any application that requires protection against such attacks must use cryptographic
authentication mechanisms, such as message authentication codes or digital signatures (which are commonly based on
cryptographic hash functions).

Secondly, unlike cryptographic hash functions, CRC is an easily reversible function, which makes it unsuitable for use in
digital signatures.[3]

Thirdly, CRC is a linear function with a property that ; as a result,
even if the CRC is encrypted with a stream cipher that uses XOR as its combining operation (or mode of block cipher
which effectively turns it into a stream cipher, such as OFB or CFB), both the message and the associated CRC can be
manipulated without knowledge of the encryption key; this was one of the well-known design flaws of the Wired
Equivalent Privacy (WEP) protocol.[4]

To compute an n-bit binary CRC, line the bits representing the input in a row, and position the (n + 1)-bit pattern
representing the CRC's divisor (called a "polynomial") underneath the left-hand end of the row.

In this example, we shall encode 14 bits of message with a 3-bit CRC, with a polynomial x³+x+1. The polynomial is written
in binary as the coefficients; a 3rd order polynomial has 4 coefficients (1x³+0x²+1x+1). In this case, the coefficients are
1,0, 1 and 1. The result of the calculation is 3 bits long.

Start with the message to be encoded:

11010011101100

This is first padded with zeroes corresponding to the bit length n of the CRC. Here is the first calculation for computing a
3-bit CRC:

11010011101100 000 <--- input right padded by 3 bits
1011 <--- divisor (4 bits) = x³+x+1

Cyclic redundancy check - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Cyclic_redundancy_check

2 of 11 24. 11. 2014 17:09

01100011101100 000 <--- result

The algorithm acts on the bits directly above the divisor in each step. The result for that iteration is the bitwise XOR of the
polynomial divisor with the bits above it. The bits not above the divisor are simply copied directly below for that step. The
divisor is then shifted one bit to the right, and the process is repeated until the divisor reaches the right-hand end of the
input row. Here is the entire calculation:

11010011101100 000 <--- input right padded by 3 bits
1011 <--- divisor
01100011101100 000 <--- result (note the first four bits are the XOR with the divisor beneath, the rest of the bits ar
 1011 <--- divisor ...
00111011101100 000
 1011
00010111101100 000
 1011
00000001101100 000 <--- note that the divisor moves over to align with the next 1 in the dividend (since quotient for
 1011 (in other words, it doesn't necessarily move one bit per iteration)
00000000110100 000
 1011
00000000011000 000
 1011
00000000001110 000
 1011
00000000000101 000
 101 1

00000000000000 100 <--- remainder (3 bits). Division algorithm stops here as quotient is equal to zero.

Since the leftmost divisor bit zeroed every input bit it touched, when this process ends the only bits in the input row that
can be nonzero are the n bits at the right-hand end of the row. These n bits are the remainder of the division step, and will
also be the value of the CRC function (unless the chosen CRC specification calls for some postprocessing).

The validity of a received message can easily be verified by performing the above calculation again, this time with the
check value added instead of zeroes. The remainder should equal zero if there are no detectable errors.

11010011101100 100 <--- input with check value
1011 <--- divisor
01100011101100 100 <--- result
 1011 <--- divisor ...
00111011101100 100

......

00000000001110 100
 1011
00000000000101 100
 101 1

 0 <--- remainder

Mathematical analysis of this division-like process reveals how to select a divisor that guarantees good error-detection
properties. In this analysis, the digits of the bit strings are taken as the coefficients of a polynomial in some variable
x—coefficients that are elements of the finite field GF(2), instead of more familiar numbers. The set of binary polynomials
is a mathematical ring.

Designing polynomials

The selection of generator polynomial is the most important part of implementing the CRC algorithm. The polynomial must
be chosen to maximize the error-detecting capabilities while minimizing overall collision probabilities.

The most important attribute of the polynomial is its length (largest degree(exponent) +1 of any one term in the
polynomial), because of its direct influence on the length of the computed check value.

The most commonly used polynomial lengths are:

9 bits (CRC-8)

17 bits (CRC-16)

Cyclic redundancy check - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Cyclic_redundancy_check

3 of 11 24. 11. 2014 17:09

33 bits (CRC-32)

65 bits (CRC-64)

A CRC is called an n-bit CRC when its check value is n-bits. For a given n, multiple CRC's are possible, each with a
different polynomial. Such a polynomial has highest degree n, and hence n + 1 terms (the polynomial has a length of n + 1).
The remainder has length n. The CRC has a name of the form CRC-n-XXX.

The design of the CRC polynomial depends on the maximum total length of the block to be protected (data + CRC bits),
the desired error protection features, and the type of resources for implementing the CRC, as well as the desired
performance. A common misconception is that the "best" CRC polynomials are derived from either irreducible
polynomials or irreducible polynomials times the factor 1 + x, which adds to the code the ability to detect all errors
affecting an odd number of bits.[5] In reality, all the factors described above should enter into the selection of the
polynomial and may lead to a reducible polynomial. However, choosing a reducible polynomial will result in a certain
proportion of missed errors, due to the quotient ring having zero divisors.

The advantage of choosing a primitive polynomial as the generator for a CRC code is that the resulting code has maximal
total block length in the sense that all 1-bit errors within that block length have different remainders (also called
syndromes) and therefore, since the remainder is a linear function of the block, the code can detect all 2-bit errors within
that block length. If r is the degree of the primitive generator polynomial, then the maximal total block length is ,
and the associated code is able to detect any single-bit or double-bit errors.[6] We can improve this situation. If we use the
generator polynomial , where is a primitive polynomial of degree , then the maximal
total block length is , and the code is able to detect single, double, triple and any odd number of errors.

A polynomial that admits other factorizations may be chosen then so as to balance the maximal total blocklength
with a desired error detection power. The BCH codes are a powerful class of such polynomials. They subsume the two
examples above. Regardless of the reducibility properties of a generator polynomial of degree r, if it includes the "+1"
term, the code will be able to detect error patterns that are confined to a window of r contiguous bits. These patterns are
called "error bursts".

The concept of the CRC as an error-detecting code gets complicated when an implementer or standards committee uses it
to design a practical system. Here are some of the complications:

Sometimes an implementation prefixes a fixed bit pattern to the bitstream to be checked. This is useful when

clocking errors might insert 0-bits in front of a message, an alteration that would otherwise leave the check value

unchanged.

Usually, but not always, an implementation appends n 0-bits (n being the size of the CRC) to the bitstream to be

checked before the polynomial division occurs. Such appending is explicitly demonstrated in the Computation of

CRC article. This has the convenience that the remainder of the original bitstream with the check value appended is

exactly zero, so the CRC can be checked simply by performing the polynomial division on the received bitstream

and comparing the remainder with zero. Due to the associative and commutative properties of the exclusive-or

operation, practical table driven implementations can obtain a result numerically equivalent to zero-appending

without explicitly appending any zeroes, by using an equivalent,[5] faster algorithm that combines the message

bitstream with the stream being shifted out of the CRC register.

Sometimes an implementation exclusive-ORs a fixed bit pattern into the remainder of the polynomial division.

Bit order: Some schemes view the low-order bit of each byte as "first", which then during polynomial division

means "leftmost", which is contrary to our customary understanding of "low-order". This convention makes sense

when serial-port transmissions are CRC-checked in hardware, because some widespread serial-port transmission

conventions transmit bytes least-significant bit first.

Byte order: With multi-byte CRCs, there can be confusion over whether the byte transmitted first (or stored in the

lowest-addressed byte of memory) is the least-significant byte (LSB) or the most-significant byte (MSB). For

example, some 16-bit CRC schemes swap the bytes of the check value.

Cyclic redundancy check - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Cyclic_redundancy_check

4 of 11 24. 11. 2014 17:09

Omission of the high-order bit of the divisor polynomial: Since the high-order bit is always 1, and since an n-bit

CRC must be defined by an (n + 1)-bit divisor which overflows an n-bit register, some writers assume that it is

unnecessary to mention the divisor's high-order bit.

Omission of the low-order bit of the divisor polynomial: Since the low-order bit is always 1, authors such as Philip

Koopman represent polynomials with their high-order bit intact, but without the low-order bit (the or 1 term).

This convention encodes the polynomial complete with its degree in one integer.

These complications mean that there are three common ways to express a polynomial as an integer: the first two, which are
mirror images in binary, are the constants found in code; the third is the number found in Koopman's papers. In each case,
one term is omitted. So the polynomial may be transcribed as:

0x3 = 0b0011, representing (MSB-first code)

0xC = 0b1100, representing (LSB-first code)

0x9 = 0b1001, representing (Koopman notation)

In the table below they are shown as:

Examples of CRC Representations

Name Normal Reversed Reversed reciprocal

CRC-4 0x3 0xC 0x9

Numerous varieties of cyclic redundancy checks have been incorporated into technical standards. By no means does one
algorithm, or one of each degree, suit every purpose; Koopman and Chakravarty recommend selecting a polynomial
according to the application requirements and the expected distribution of message lengths.[7] The number of distinct CRCs
in use has confused developers, a situation which authors have sought to address.[5] There are three polynomials reported
for CRC-12,[7] sixteen conflicting definitions of CRC-16, and six of CRC-32.[8]

The polynomials commonly applied are not the most efficient ones possible. Between 1993 and 2004, Koopman,
Castagnoli and others surveyed the space of polynomials up to 16 bits,[7] and of 24 and 32 bits,[9][10] finding examples that
have much better performance (in terms of Hamming distance for a given message size) than the polynomials of earlier
protocols, and publishing the best of these with the aim of improving the error detection capacity of future standards.[10] In
particular, iSCSI and SCTP have adopted one of the findings of this research, the CRC-32C (Castagnoli) polynomial.

The design of the 32-bit polynomial most commonly used by standards bodies, CRC-32-IEEE, was the result of a joint
effort for the Rome Laboratory and the Air Force Electronic Systems Division by Joseph Hammond, James Brown and
Shyan-Shiang Liu of the Georgia Institute of Technology and Kenneth Brayer of the MITRE Corporation. The earliest
known appearances of the 32-bit polynomial were in their 1975 publications: Technical Report 2956 by Brayer for MITRE,
published in January and released for public dissemination through DTIC in August,[11] and Hammond, Brown and Liu's
report for the Rome Laboratory, published in May.[12] Both reports contained contributions from the other team. During
December 1975, Brayer and Hammond presented their work in a paper at the IEEE National Telecommunications
Conference: the IEEE CRC-32 polynomial is the generating polynomial of a Hamming code and was selected for its error
detection performance.[13] Even so, the Castagnoli CRC-32C polynomial used in iSCSI or SCTP matches its performance
on messages from 58 bits to 131 kbits, and outperforms it in several size ranges including the two most common sizes of
Internet packet.[10] The ITU-T G.hn standard also uses CRC-32C to detect errors in the payload (although it uses
CRC-16-CCITT for PHY headers).

The table below lists only the polynomials of the various algorithms in use. Variations of a particular protocol can impose
pre-inversion, post-inversion and reversed bit ordering as described above. For example, the CRC32 used in both Gzip and
Bzip2 use the same polynomial, but Bzip2 employs reversed bit ordering, while Gzip does not.

CRCs in proprietary protocols might use a non-trivial initial value and final XOR for obfuscation but this does not add
cryptographic strength to the algorithm. An unknown error-detecting code can be characterized as a CRC, and as such
fully reverse engineered, from its output codewords.[14]

Cyclic redundancy check - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Cyclic_redundancy_check

5 of 11 24. 11. 2014 17:09

See Polynomial representations of cyclic redundancy checks for the algebraic representations of the polynomials for the
CRCs below.

Cyclic redundancy check - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Cyclic_redundancy_check

6 of 11 24. 11. 2014 17:09

Name Uses
Polynomial representations

Normal Reversed Reversed reciprocal

CRC-1
most hardware; also
known as parity bit

0x1 0x1 0x1

CRC-4-ITU
G.704 (http://www.itu.int
/rec/T-
REC-G.704-199810-I/en)

0x3 0xC 0x9

CRC-5-EPC Gen 2 RFID[15] 0x09 0x12 0x14

CRC-5-ITU
G.704 (http://www.itu.int
/rec/T-
REC-G.704-199810-I/en)

0x15 0x15 0x1A

CRC-5-USB USB token packets 0x05 0x14 0x12

CRC-6-
CDMA2000-A mobile networks[16] 0x27 0x39 0x33

CRC-6-
CDMA2000-B mobile networks[16] 0x07 0x38 0x23

CRC-6-ITU
G.704 (http://www.itu.int
/rec/T-
REC-G.704-199810-I/en)

0x03 0x30 0x21

CRC-7

telecom systems, G.707
(http://www.itu.int/rec/T-
REC-G.707/en), G.832
(http://www.itu.int/rec/T-
REC-G.832/en), MMC,
SD

0x09 0x48 0x44

CRC-7-MVB
Train Communication
Network, IEC 60870-5[17] 0x65 0x53 0x72

CRC-8 0xD5 0xAB 0xEA[7]

CRC-8-CCITT

I.432.1 (http://www.itu.int
/rec/T-
REC-I.432.1-199902-
I/en); ATM HEC, ISDN
HEC and cell delineation

0x07 0xE0 0x83

CRC-8-
Dallas/Maxim

1-Wire bus 0x31 0x8C 0x98

CRC-8-SAE
J1850

AES3 0x1D 0xB8 0x8E

CRC-8-WCDMA mobile networks[16][18] 0x9B 0xD9 0xCD[7]

CRC-10
ATM; I.610
(http://www.itu.int/rec/T-
REC-I.610/en)

0x233 0x331 0x319

CRC-10-
CDMA2000 mobile networks[16] 0x3D9 0x26F 0x3EC

CRC-11 FlexRay[19] 0x385 0x50E 0x5C2

CRC-12 telecom systems[20][21] 0x80F 0xF01 0xC07[7]

CRC-12-
CDMA2000 mobile networks[16] 0xF13 0xC8F 0xF89

CRC-13-BBC
Time signal, Radio
teleswitch[22] 0x1CF5 0x15E7 0x1E7A

CRC-15-CAN 0x4599 0x4CD1 0x62CC

Cyclic redundancy check - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Cyclic_redundancy_check

7 of 11 24. 11. 2014 17:09

CRC-15-
MPT1327

[23] 0x6815 0x540B 0x740A

Chakravarty
optimal for payloads ≤64
bits[17] 0x2F15 0xA8F4 0x978A

CRC-16-ARINC ACARS applications[24] 0xA02B 0xD405 0xD015

CRC-16-CCITT

X.25, V.41, HDLC FCS,
XMODEM, Bluetooth,
PACTOR, SD, many
others; known as
CRC-CCITT

0x1021 0x8408 0x8810[7]

CRC-16-
CDMA2000 mobile networks[16] 0xC867 0xE613 0xE433

CRC-16-DECT cordless telephones[25] 0x0589 0x91A0 0x82C4

CRC-16-
T10-DIF

SCSI DIF 0x8BB7[26] 0xEDD1 0xC5DB

CRC-16-DNP DNP, IEC 870, M-Bus 0x3D65 0xA6BC 0x9EB2

CRC-16-IBM

Bisync, Modbus, USB,
ANSI X3.28
(http://www.incits.org
/press
/1997/pr97020.htm), SIA
DC-07, many others; also
known as CRC-16 and
CRC-16-ANSI

0x8005 0xA001 0xC002

Fletcher
Used in Adler-32 A & B
Checksums

Not a CRC; see Fletcher's checksum

CRC-17-CAN CAN FD[27] 0x1685B 0x1B42D 0x1B42D

CRC-21-CAN CAN FD[27] 0x102899 0x132281 0x18144C

CRC-24 FlexRay[19] 0x5D6DCB 0xD3B6BA 0xAEB6E5

CRC-24-
Radix-64

OpenPGP, RTCM104v3 0x864CFB 0xDF3261 0xC3267D

CRC-30 CDMA 0x2030B9C7 0x38E74301 0x30185CE3

Adler-32 Zlib Not a CRC; see Adler-32

CRC-32

HDLC, ANSI X3.66,
ITU-T V.42, Ethernet,
Serial ATA, MPEG-2,
PKZIP, Gzip, Bzip2,
PNG,[28] many others

0x04C11DB7 0xEDB88320 0x82608EDB[10]

CRC-32C
(Castagnoli)

iSCSI, SCTP, G.hn
payload, SSE4.2, Btrfs,
ext4

0x1EDC6F41 0x82F63B78 0x8F6E37A0[10]

CRC-32K
(Koopman)

0x741B8CD7 0xEB31D82E 0xBA0DC66B[10]

CRC-32Q aviation; AIXM[29] 0x814141AB 0xD5828281 0xC0A0A0D5

CRC-40-GSM
GSM control
channel[30][31] 0x0004820009 0x9000412000 0x8002410004

CRC-64-ECMA

ECMA-182
(http://www.ecma-
international.org
/publications/standards
/Ecma-182.htm), XZ Utils

0x42F0E1EBA9EA3693 0xC96C5795D7870F42 0xA17870F5D4F51B49

Cyclic redundancy check - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Cyclic_redundancy_check

8 of 11 24. 11. 2014 17:09

CRC-64-ISO
HDLC, Swiss-
Prot/TrEMBL; considered
weak for hashing[32]

0x000000000000001B 0xD800000000000000 0x800000000000000D

Implementation of CRC32 in Gnuradio (http://gnuradio.org/redmine/projects/gnuradio/repository/revisions

/1cb52da49230c64c3719b4ab944ba1cf5a9abb92/entry/gr-digital/lib/digital_crc32.cc);

C class code for CRC checksum calculation with many different CRCs to choose from (http://sourceforge.net

/projects/crccalculator/files/CRC/)

Mathematics of cyclic redundancy checks

Computation of cyclic redundancy checks

Polynomial representations of cyclic redundancy checks

Error detection and correction

List of hash functions

Information security

Simple file verification

cksum

Header Error Correction

^ Peterson, W. W. and Brown, D. T. (January 1961). "Cyclic Codes for Error Detection". Proceedings of the IRE 49 (1):

228–235. doi:10.1109/JRPROC.1961.287814 (http://dx.doi.org/10.1109%2FJRPROC.1961.287814).

1.

^ Ritter, Terry (February 1986). "The Great CRC Mystery" (http://www.ciphersbyritter.com/ARTS/CRCMYST.HTM). Dr.

Dobb's Journal 11 (2): 26–34, 76–83. Retrieved 21 May 2009.

2.

^ Stigge, Martin; Plötz, Henryk; Müller, Wolf; Redlich, Jens-Peter (May 2006). "Reversing CRC – Theory and Practice"

(http://sar.informatik.hu-berlin.de/research/publications/SAR-PR-2006-05/SAR-PR-2006-05_.pdf). Berlin: Humboldt University

Berlin. p. 17. Retrieved 4 February 2011. "The presented methods offer a very easy and efficient way to modify your data so

that it will compute to a CRC you want or at least know in advance."

3.

^ Cam-Winget, Nancy; Housley, Russ; Wagner, David; Walker, Jesse (May 2003). "Security Flaws in 802.11 Data Link

Protocols". Communications of the ACM 46 (5): 35–39. doi:10.1145/769800.769823 (http://dx.doi.org

/10.1145%2F769800.769823).

4.

^ a b c Williams, Ross N. (24 September 1996). "A Painless Guide to CRC Error Detection Algorithms V3.00"

(http://www.repairfaq.org/filipg/LINK/F_crc_v3.html). Retrieved 5 June 2010.

5.

^ Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 22.4 Cyclic Redundancy and Other Checksums"

(http://apps.nrbook.com/empanel/index.html#pg=1168). Numerical Recipes: The Art of Scientific Computing (3rd ed.). New

York: Cambridge University Press. ISBN 978-0-521-88068-8.

6.

^ a b c d e f g Koopman, Philip; Chakravarty, Tridib (June 2004). "Cyclic Redundancy Code (CRC) Polynomial Selection For

Embedded Networks" (http://www.ece.cmu.edu/~koopman/roses/dsn04/koopman04_crc_poly_embedded.pdf). The

International Conference on Dependable Systems and Networks: 145–154. doi:10.1109/DSN.2004.1311885 (http://dx.doi.org

/10.1109%2FDSN.2004.1311885). ISBN 0-7695-2052-9. Retrieved 14 January 2011.

7.

^ Cook, Greg (6 July 2012). "Catalogue of parametrised CRC algorithms" (http://reveng.sourceforge.net/crc-catalogue/all.htm).

Retrieved 7 July 2012.

8.

^ Castagnoli, G.; Bräuer, S.; Herrmann, M. (June 1993). "Optimization of Cyclic Redundancy-Check Codes with 24 and 329.

Cyclic redundancy check - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Cyclic_redundancy_check

9 of 11 24. 11. 2014 17:09

Parity Bits". IEEE Transactions on Communications 41 (6): 883. doi:10.1109/26.231911 (http://dx.doi.org

/10.1109%2F26.231911).

^ a b c d e f Koopman, Philip (July 2002). "32-Bit Cyclic Redundancy Codes for Internet Applications" (http://www.ece.cmu.edu

/~koopman/networks/dsn02/dsn02_koopman.pdf). The International Conference on Dependable Systems and Networks:

459–468. doi:10.1109/DSN.2002.1028931 (http://dx.doi.org/10.1109%2FDSN.2002.1028931). ISBN 0-7695-1597-5.

Retrieved 14 January 2011.

10.

^ Brayer, Kenneth (August 1975). "Evaluation of 32 Degree Polynomials in Error Detection on the SATIN IV Autovon Error

Patterns" (http://www.dtic.mil/srch/doc?collection=t3&id=ADA014825). National Technical Information Service. p. 74.

Retrieved 3 February 2011.

11.

^ Hammond, Joseph L., Jr.; Brown, James E.; Liu, Shyan-Shiang (1975). "Development of a Transmission Error Model and an

Error Control Model" (http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA013939&Location=U2&doc=GetTRDoc.pdf).

Unknown (National Technical Information Service, published May 1975) 76: 74. Bibcode:1975STIN...7615344H

(http://adsabs.harvard.edu/abs/1975STIN...7615344H). Retrieved 7 July 2012.

12.

^ Brayer, Kenneth; Hammond, Joseph L., Jr. (December 1975). "Evaluation of error detection polynomial performance on the

AUTOVON channel". "Conference Record". IEEE National Telecommunications Conference, New Orleans, La 1. New York:

Institute of Electrical and Electronics Engineers. pp. 8–21 to 8–25. Bibcode:1975ntc.....1....8B (http://adsabs.harvard.edu

/abs/1975ntc.....1....8B).

13.

^ Ewing, Gregory C. (March 2010). "Reverse-Engineering a CRC Algorithm" (http://www.cosc.canterbury.ac.nz/greg.ewing

/essays/CRC-Reverse-Engineering.html). Christchurch: University of Canterbury. Retrieved 26 July 2011.

14.

^ Class-1 Generation-2 UHF RFID Protocol (http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2/uhfc1g2_1_2_0-standard-

20080511.pdf). 1.2.0. EPCglobal. 23 October 2008. p. 35. Retrieved 4 July 2012. (Table 6.12)

15.

^ a b c d e f Physical layer standard for cdma2000 spread spectrum systems (http://www.3gpp2.org/public_html/specs

/C.S0002-D_v2.0_051006.pdf). Revision D version 2.0. 3rd Generation Partnership Project 2. October 2005. pp. 2–89–2–92.

Retrieved 14 October 2013.

16.

^ a b Chakravarty, Tridib (December 2001). Performance of Cyclic Redundancy Codes for Embedded Networks

(http://www.ece.cmu.edu/~koopman/thesis/chakravarty.pdf) (Thesis). Philip Koopman, advisor. Pittsburgh: Carnegie Mellon

University. pp. 5,18. Retrieved 8 July 2013.

17.

^ Richardson, Andrew (17 March 2005). WCDMA Handbook (http://books.google.co.uk/books?id=yN5lve5L4vwC&

lpg=PA223&dq=&pg=PA223#v=onepage&q&f=false). Cambridge, UK: Cambridge University Press. p. 223.

ISBN 0-521-82815-5.

18.

^ a b FlexRay Protocol Specification. 3.0.1. Flexray Consortium. October 2010. p. 114. (4.2.8 Header CRC (11 bits))19.

^ Perez, A.; Wismer & Becker (1983). "Byte-Wise CRC Calculations". IEEE Micro 3 (3): 40–50.

doi:10.1109/MM.1983.291120 (http://dx.doi.org/10.1109%2FMM.1983.291120).

20.

^ Ramabadran, T.V.; Gaitonde, S.S. (1988). "A tutorial on CRC computations". IEEE Micro 8 (4): 62–75. doi:10.1109/40.7773

(http://dx.doi.org/10.1109%2F40.7773).

21.

^ Ely, S.R.; Wright, D.T. (March 1982). L.F. Radio-Data: specification of BBC experimental transmissions 1982

(http://downloads.bbc.co.uk/rd/pubs/reports/1982-02.pdf). Research Department, Engineering Division, The British

Broadcasting Corporation. p. 9. Retrieved 11 October 2013.

22.

^ A signalling standard for trunked private land mobile radio systems (MPT 1327) (http://www.ofcom.org.uk/static/archive

/ra/publication/mpt/mpt_pdf/mpt1327.pdf) (3rd ed.). Ofcom. June 1997. p. 3-3. Retrieved 16 July 2012. (3.2.3 Encoding and

error checking)

23.

^ Rehmann, Albert; Mestre, José D. (February 1995). "Air Ground Data Link VHF Airline Communications and Reporting

System (ACARS) Preliminary Test Report" (http://ntl.bts.gov/lib/1000/1200/1290/tn95_66.pdf). Federal Aviation Authority

Technical Center. p. 5. Retrieved 7 July 2012.

24.

^ "ETSI EN 300 175-3". V2.2.1. Sophia Antipolis, France: European Telecommunications Standards Institute. November 2008.25.

^ Thaler, Pat (28 August 2003). "16-bit CRC polynomial selection" (http://www.t10.org/ftp/t10/document.03/03-290r0.pdf).

INCITS T10. Retrieved 11 August 2009.

26.

^ a b CAN with Flexible Data-Rate Specification (http://www.bosch-semiconductors.de/media/pdf_1/canliteratur

/can_fd_spec.pdf). 1.0. Robert Bosch GmbH. April 17, 2012. p. 13. (3.2.1 DATA FRAME)

27.

^ Boutell, Thomas; Randers-Pehrson, Glenn; et al. (14 July 1998). "PNG (Portable Network Graphics) Specification, Version28.

Cyclic redundancy check - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Cyclic_redundancy_check

10 of 11 24. 11. 2014 17:09

1.2" (http://www.libpng.org/pub/png/spec/1.2/PNG-Structure.html). Libpng.org. Retrieved 3 February 2011.

^ AIXM Primer (http://www.eurocontrol.int/sites/default/files/content/documents/information-management/20060320-

aixm-primer.pdf). 4.5. European Organisation for the Safety of Air Navigation. 20 March 2006. Retrieved 4 July 2012.

29.

^ Gammel, Berndt M. (31 October 2005). Matpack documentation: Crypto - Codes (http://www.matpack.de

/index.html#DOWNLOAD). Matpack.de. Retrieved 21 April 2013. (Note: MpCRC.html is included with the Matpack

compressed software source code, under /html/LibDoc/Crypto)

30.

^ Geremia, Patrick (April 1999). "Cyclic redundancy check computation: an implementation using the TMS320C54x"

(http://www.ti.com/lit/an/spra530/spra530.pdf) (SPRA530). Texas Instruments. p. 5. Retrieved 4 July 2012.

31.

^ Jones, David T. "An Improved 64-bit Cyclic Redundancy Check for Protein Sequences" (http://www.cs.ucl.ac.uk/staff

/d.jones/crcnote.pdf). University College London. Retrieved 15 December 2009.

32.

MathPages – Cyclic Redundancy Checks (http://www.mathpages.com/home/kmath458.htm): overview with an

explanation of error-detection of different polynomials.

The CRC Pitstop (http://www.ross.net/crc/) – home of A Painless Guide to CRC Error Detection Algorithms

(http://www.ross.net/crc/crcpaper.html)

Black, R. (February 1994). "Fast CRC32 in Software" (http://www.cl.cam.ac.uk/Research/SRG/bluebook/21/crc

/crc.html). The Blue Book. Systems Research Group, Computer Laboratory, University of Cambridge. algorithm 4 is

used in Linux and info-zip's zip and unzip.

Kounavis, M.; Berry, F. (2005). "A Systematic Approach to Building High Performance, Software-based, CRC

generators" (http://www.intel.com/technology/comms/perfnet/download/CRC_generators.pdf). Intel., Slicing-by-4

and slicing-by-8 algorithms

CRC-Analysis with Bitfilters (http://einstein.informatik.uni-oldenburg.de/papers/CRC-BitfilterEng.pdf)

Cyclic Redundancy Check (http://www.hackersdelight.org/crc.pdf): theory, practice, hardware, and software with

emphasis on CRC-32. A sample chapter from Henry S. Warren, Jr. Hacker's Delight.

Reverse-Engineering a CRC Algorithm (http://www.cosc.canterbury.ac.nz/greg.ewing/essays/CRC-Reverse-

Engineering.html)

Catalogue of parametrised CRC algorithms (http://reveng.sourceforge.net/crc-catalogue/all.htm)

Koopman, Phil. "Blog: Checksum and CRC Central" (http://checksumcrc.blogspot.com/). — includes links to PDFs

giving 16 and 32-bit CRC Hamming distances

Retrieved from "http://en.wikipedia.org/w/index.php?title=Cyclic_redundancy_check&oldid=630867205"

Categories: Binary arithmetic Cyclic redundancy checks Finite fields

This page was last modified on 24 October 2014 at 00:37.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

Cyclic redundancy check - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Cyclic_redundancy_check

11 of 11 24. 11. 2014 17:09

