
8  DIGITAL FILTER IMPLEMENTATION 

8.1 THE FINITE WORD LENGTH PROBLEM 

In discussing filter realizations, we have so far assumed that all variables can be 
represented exactly in the computer, and all arithmetic operations can be performed to 
an infinite precision. In practice, numbers can be represented only to a finite precission. 
And arithmetic operations are subjects to errors, since a computer word has only a finite 
number of bits. The operation of representing a number to a fixed precission (that is, by 
a fixed number of bits) is called quantization. Consider, for example, the digital filter 

  (8.1) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 0 1y n a y n b x n b x n= − − + + −1

In implementing this filter, we must deal with the following problems: 
1. The input signal ( )x n  may have been obtained by converting a continuous-time 

signal ( )x t . As we know, A/D conversion gives rise to quantization errors, 
determining by the number of bits of the A/D. 

2. The constant coefficients , ,  cannot be represented exactly, in 
general, the error in each of these coefficients can be up to the least significant 
bit (LSB) of the computer word. Because of these errors, the digital filter we 
implement differs from the desired one. Its poles and zeros are not in the desired 
locations, and its frequency response is different from the desired one. 

( )1a ( )0b ( )1b

3. When we form the product , the number of bits in the result is the 
sum of the numbers of bits in  and . It is unreasonable to keep 
increasing the number of bits of , and quantize  to this 
number. Such quantization leads to an error each time we update  (i.e., at 
every time point). 

( ) ( )1a y n −
( )1a

(y n

1
)

1
( 1y n −

) ( ) ( )1a y n −
( )y n

4. If ( )x n

(y n

 and  are represented by the same number of bits, we must quantize 
the products ,  every time they are computed. It is 
possible to avoid this error if we assign to  a number of bits equal or 
greater than that of these products. In practice, this usually means representation 
of  in double precision. 

( )y n
( )0 ( )b x n ( ) ( )1b x n −

( )

1
( )y n

)
5. The range of values of  that can be represented in fixed point is limited by 

the word length. Large input values can cause  to overflow, that is, to 
exceed its full scale. To avoid overflow, it may be necessary to scale down the 
input signal. Scaling always involves trade-off: On one hand we want to use  as 
many significant bits as possible, but on the other hand we want to eliminate or 
minimize the possibility to overflow. 

y n
( )y n
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6. If the output signal  is to be fed to the D/A converter, it sometimes needs 
to be further quantized, to match the number of bits in the D/A. Such 
quantization is another source of error. 

( )y n

 
In the remaining sections of this chapter we shall study these problems, analyze 

their effects, and learn how they can be solved or at least mitigated. 

8.2 COEFFICIENT QUANTIZATION IN DIGITAL FILTERS 

When a digital filter is designed using high-level software, the coefficients of the 
designed filter are computed to high accuracy. MATLAB, for example, gives the 
coefficients to 15 decimal digits. With such accuracy, the specifications are usually met 
exactly (even exceeded in some bands, because the order of the filter is typically 
rounded upward). When the filter is to be implemented, there is usually a need to 
quantize the coefficients to the word length used for the implementation (whether in 
software or in hardware). Coefficient quantization changes the transfer function and, 
consequently, the frequency response of the filter. As a result, the implemented filter 
may fail to meet the specifications. This was a difficult problem in the past, when 
computers had relatively short word lengths. Today, many microprocessors designed for 
DSP applications have word lengths from 16 bits (about 4 decimal digits) and up to 24 
in some (about 7 decimal digits). In the future, even longer words are likely to be in use, 
and floating-point arithmetic may become commonplace in DSP applications. However, 
there are still many cases in which finite word length is a problem to be dealt with, 
whether because of hardware limitations, tight specifications of the filter in question, or 
both. We therefore devote this section to the study of coefficient quantization effects. 
We first consider the effect of quantization on the poles and the zeros of the filter, and 
then its effect on the frequency response. 

8.2.1 QUANTIZATION EFFECTS ON POLES AND ZEROS 

Coefficient quantization causes a replacement of the exact param ters e ( ) ( ){ },a k b k
( )

 
of the transfer function by corresponding approximate values ( ){ }ˆ,b kâ k . The 
difference between the exact and approximate values of each parameter can be up to the 
LSB of the computer, multiplied by the full-scale value of the parameter. For example, 
consider a second-order IIR filter 

 ( ) ( ) ( ) ( )
( ) ( )

1 2

1

0 1 2
1 1 2

b b z b z
H z

a z a z

− −

−

+ +
=

+ + 2−  (8.2) 

Since we are dealing only with stable filters, we know that necessarily ( )1a < 2  and 
( )2a <1. Suppose  we represent each coefficient by B  bits, including sign. Then, 

assuming we scale a  so that the largest representable number is ± , the LSB for 
 will be , and the error 

( )1
)

2
( )1a ( 22 B− − ( ) ( )ˆ 1a a− 1 )

)

 can be up to . Similarly, assuming 
we scale  so that the largest representable number is ± , the LSB for  will be 

, and the error 

( 12 B− −

1(a )2 ( )1a
( 12 B− − ( ) ( )â 1 a− 1  can be up to .      2 B−

Replacement of the exact parameters by the quantized values causes the poles and 
zeros of the filter to shift their desired locations, and the frequency response to deviate 
from its desired shape. Usually, we are not as much interested in the deviation of the 
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poles and zeros as in the deviation of the frequency response. However, it is instructive 
to explore the former, since this will lead to important qualitative conclusions. Consider, 
for example, the poles of a second-order filter, given by 

 ( ) ( ) ( )( )2
1,2 ˆ ˆ ˆ0.5 1 2 0.25 1a a aα = − ± −  (8.3) 

Since ( ) ( ){ }ˆ ˆ1 , 2a a
1,2α

5B =

 can assume only a finite number of values each (equal to ), the 
poles  can assume only a finite number of values. Of particular interest are the 
possible locations of complex stable poles. These are depicted by the dots in Figure 1, in 
the case . 

2B

�����

�����  

Figure 1 Possible locations of complex stable poles of second-order digital filter in 
direct realization, number of bits   5B =

As we see from Figure 1, the permissible locations of complex poles of the 
quantized filter are not distributed uniformly inside the unit circle. In particular, small 
values of the imaginary part are virtually excluded. The low density of permissible pole 
locations in the vicinity of  and  is especially troublesome. Narrow-band, 
high-pass filters must have complex poles in the neighborhood of . We therefore 
conclude that high coefficient accuracy is needed to accurately place the poles of such 
filters. Another conclusion is that high sampling rates are undesirable from the point of 
view of sensitivity of the filter to coefficient quantization. A high sampling rate means 
that the frequency response in the  domain is pushed toward the low-frequency band, 
correspondingly, the poles are pushed toward  and, as we have seen, this increases 
the word length necessary for accurate representation of the coefficients. 

1z = 1z = −
1z = −

ω
1z =

There is another realization of second –order section called coupled realization 
shown in Figure 2. 
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Figure 2 A coupled second-order section for cascade realization 

The parameters ,  are the real and imaginary parts of the complex pole of the 
second-order section that is 

rα iα

 ( ) 22 2Re ,r r iα α α α= + α=

1

 (8.4) 

( )1s n ,  are state-space variables and ,  are coefficients necessary to 
obtain the right numerator of transfer function (8.2) (for b ). This realization is 
parametrized directly in the terms of 

( )2s n ( )1c ( )2c
( )0 =

{ },rα α

B

i

5=

, the real and imaginary parts of the 
complex pole. Therefore, if each of these two parameters is quantized to  levels in 
the range ( , the permissible pole locations will be distributed uniformly in the unit 
circle. This is illustrated in Figure 3 for . As we see, the density of permissible 
pole locations near  is higher in this case. 

2B
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Figure 3 Possible locations of complex stable poles of a second-order digital filter in 
coupled form, number of bits  5B =

The sensitivity of the poles of a digital IIR filter to denominator coefficient 
quantization usually increases with the filter order. 

The effect of quantization of the numerator coefficients may seems, at first glance, 
to be the same as that of the denominator coefficients. This, however, is not the case. As 
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we know, the zeros of an analog filter of the four common classes (Butterworth, 
Chebyshev-I, Chebyshev-II, elliptic) are always on the imaginary axis. Consequently, 
the zeros of a digital IIR filter obtained from an analog filter by a bilinear transform are 
always on the unit circle. Thus, the numerator of a second-order IIR filter has either real 
zeros at  or a conjugate complex pair at 1z = ± jz e ξ±=

effi
1 2

. In the former case, the 
coefficients are trivial ( ±  or ± ), so the problem of co
arise. In the latter case, the numerator has the form  (up to a 
constant gain), so only the coefficient 

1 2 cient quantization does not 
+( )( )1 2cos z zξ − −−

( )2cos ξ  is subject to quantization. When this 
coefficient undergoes a small perturbation, the zeros will shift but will stay on the unit 
circle. The effect of such a shift on the behavior of the filter is usually minor. 

8.2.2 QUANTIZATION EFFECTS ON THE FREQUENCY RESPONSE 

Next we examine the sensitivity of the magnitude of the filter’s frequency response 
to coefficient quantization. We assume that  depends on a set of real parameters (H jω)
{ },1kx k K≤ ≤ . In case of a direct realization, the parameters are { },1ia i N≤ ≤  and 
{ }, 0ib i N≤ ≤

( ) ( )
, in case of a parallel realization, they are c  and ( )0

{ }, ,e i f i
( ) ( )

1 i N≤ ≤ , in case of a cascade realization, they are b  and ( )0
{ }, ,1g i h i i N≤ ≤ . For all IIR filter realizations, . In case of a direct 
realization of a linear phase FIR filter, the parameters are 

2K N= +
( )

1
{ }, 0h i 0.5i N≤ ≤    . 

Let us assume that the perturbations in the parameters resulting from quantization 
are small, and approximate the perturbation in the magnitude response ( )H jω  by a 
first-order Taylor series: 

 ( ) ( ) ( ) (
1

ˆ ˆ
K

k k
k k

H j
H j H j x x

x
ω

ω ω
=

∂
− ≈ −

∂∑ )  (8.5) 

The partial derivatives on the right side of (8.5) are given by 

 
( ) ( ) ( )Re j

k k

H j H j
e

x x
φ ωω ω −∂ ∂ 

=  ∂ ∂ 
 (8.6) 

where ( )φ ω  is the phase response of the filter. The approximate error formula (8.5) can 
be used for estimating the effect of coefficient quantization on the magnitude response 
in the following manner. Let kX  denote the full scale used for the coefficient kx . kX  
must be at least as large as kx , and is often larger, for reasons explained below. Let Q  
be half the quantization level relative to full scale, so Q (where 2 B−= B  is the word 
length in bits). Then we have 

 ˆk k kx x X− ≤ Q  (8.7) 

Substitution in (8.5) leads to the approximate inequality 

 ( ) ( ) ( )
1

ˆ
K

k
k k

H j
H j H j Q x

x
ω

ω ω
=

∂
− ≤

∂∑  (8.8) 

The function 
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 ( ) ( )
1

K

k
k k

H j
S

x
ω

ω
=

∂
=

∂∑ x  (8.9) 

 is the sensitivity bound of the filter. As we see, the sensitivity bound depends on the 
realization. The realization determines the coefficients kx , their full-scale values, and 
the partial derivatives of the magnitude response with respect to the coefficients. In 
summary, the error in the magnitude response at any given frequency is approximately 
bounded by  

 ( ) ( ) ( )ˆ 2 BH j H j Sω ω −− ≤ ω  (8.10) 

A common way of choosing the full-scale values kX  is as follows. For each of the 
numerator and denominator polynomials of a direct realization, we find the coefficient 
having the largest magnitude and use it as the full-scale value for all the coefficients of 
the polynomial in question. The corresponding formulas are 

 ( )( ) , 0numX MAX abs b i i N = ≤ ≤   (8.11) 

 ( )( ) ,1denX MAX abs a i i N = ≤ ≤   (8.12) 

This way, the coefficient of largest magnitude in each polynomial is represented by . 
For parallel and cascade realizations, we scale each section separately in the same way. 

1±

Another way of choosing the full-scale values is to round the largest magnitude 
coefficient of each polynomial upward to the nearest integer power of 2 and take the 
rounded value as the full scale of all the coefficients of the polynomial. The 
corresponding formulas are 

 ( )( )(2log , 0
2

MAX abs b i i N
numX )  ≤ ≤  =  (8.13) 

 ( )( )(2log ,1
2

MAX abs a i i N
denX )  ≤ ≤  =  (8.14) 

This method yields larger numX  and denX  than the ones in (8.11) and (8.12), but is more 
convenient, since the scaled coefficients are related to the true ones by simple shifts. 

The sensitivity bound is useful for determining a suitable word length for 
implementing a given filter in a given realization. Let  be the minimum tolerance of 
all pass bands of the filter, and 

pδ
sδ  the minimum tolerance of all stop bands. It is 

reasonable to require that the maximum deviation from the tolerance caused by 
quantization be no more than 10 percent of the tolerance itself (a different percentage 
can be chosen, depending on the application). With this requirement, (8.10) leads to 

 
( ){ }

2
p

max : in a pass band
log

0.1
S

B
ω ω

δ
 

≥ 
 

  (8.15) 
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( ){ }

2
s

max : in a stop band
log

0.1
S

B
ω ω

δ
 

≥ 
 

  (8.16) 

Therefore, choosing B  according to the greater of the two right sides in (8.15) and 
(8.16) guarantees that the error in the magnitude response resulting from quantization 
will deviate only slightly (if at all) from the permitted bounds in all frequency bands. 

Matlab functions in the Appendix compute the sensitivity bounds for the standard 
realizations. The procedure sensiir is for IIR filters in direct, parallel, and cascade 
realizations, whereas sensfir is for linear-phase FIR filters in a direct realization.  Each 
of the two procedures returns the individual sensitivities ( ) / kH j xω

( )H jω

∂  in the matrix 
dHmag, and the sensitivity bound S  in the vector S. These are computed at  
frequency points, in the interval specified by the input variable theta. The procedure 
dhdirect, dhparal, dhcascad return the partial derivatives ∂  of the 
respective IIR realizations, and the full-scale values 

∂

∂

( )ω K

/ kx
kX  of the coefficients. The full-

scale values are computed by scale2 according to (8.13) and (8.14). 

8.3 SCALING IN FIXED-POINT ARITHMETIC 

When implementing a digital filter in fixed-point arithmetic, it is necessary to scale 
the input and output signals, as well as certain inner signals, to avoid signals values that 
exceed the maximum representable number. A problem of similar nature arises in active 
analog filters. There, it is required to limit the signals to voltages below the saturation 
levels of the operational amplifiers. However, there is an important  difference between 
the analog and the digital cases: When an analog signal exceeds its permitted value, its 
magnitude is limited but its polarity is preserved. When a digital signal exceeds its 
value, we call it an overflow. An overflow in two’s-complement arithmetic leads to 
polarity reversal. A number slightly larger than 1 changes to a number slightly larger 
than –1. Therefore, overflows in digital filter are potentially more harmful than in 
analog filters, and care is necessary to prohibit them, or to treat them properly when 
they occur. 

The scaling problem can be started in mathematical terms as follows. Suppose we 
wish to prevent the magnitude of the output signal ( )y n  upper limit . Since the 
input and output are related through a convolution 

maxy

 ( ) { } ( )y n x h n= ∗  (8.17) 

we may be able to achieve this goal by properly limiting the input signal ( )x n . This, 
however may be undesirable because limiting is a nonlinear operation that distorts the 
signal. A more attractive solution is to scale the impulse response by a proportionality 
factor , chosen in a way that will prevent the magnitude of c { } ( )h nc x  from 
exceeding the maximum value . Such a proportionality factor may also be useful in 
the opposite case. If the dynamic range of 

∗
maxy

( )x n

(y n

 is such that  is much smaller in 
magnitude than , we can adjust  to increase the range of  as needed. In 
either case, the transfer function  is called a scaled transfer function.  Our task 
is to find a scale factor  that will cause  to have as large dynamic range as 
possible without exceeding in magnitude. Judicious choice of a scale factor 
requires knowledge of certain parameters of the input signal. Accordingly, there exist 

( )y n
maxy c

)z
( )y n

(cH

maxy
c )
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several scaling methods, differing in their assumptions on the nature and properties of 
the input signal. 

The scaling problem is obviated if floating-point arithmetic is used. However, 
fixed- point implementations of digital are very common, so familiarity with scaling 
methods and the effect of scaling on the properties of the filter is expedient. 

8.3.1 TIME-DOMAIN SCALING 

Consider a linear, time invariant filter whose impulse response and transfer function 
are  and , respectively. Assume that the input signal ( )h n ( )H z ( )x n  is known to be 
bounded in magnitude by maxx , and the output signal is required to be bounded in 
magnitude by . Both values are relative to the maximum value representable by the 
computer, usually taken as 1. The output signal is related to the input by the convolution 
formula 

maxy

  (8.18) ( ) ( ) ( )
0m

y n h m x n m
∞

=

=∑ −

Therefore, 

 ( ) ( ) ( ) ( )max max 1
0 0m m

y n h m x n m x h m x h
∞ ∞

= =

≤ ⋅ − ≤ =∑ ∑  (8.19) 

where  
 

 ( )1
0m

h h
∞

=

=∑ m  (8.20) 

Stability of the filter h n  implies that ( ) 1
 is finite. As we see, the requirement h

( ) maxy n y≤  will be achieved if we use a scale factor 

 max

max 1

yc
x h

=  (8.21) 

In practice, it may be convenient to round c  downward to an integer power of 2, since 
this facilitates scaling by bit shifting. 

Example 1 
Suppose that an analog signal is sampled by a 12-bit A/D converter, then fed to a 16-bit 
filter whose transfer function is  

 ( ) 1

1
1 0.98

H z
z−=

−
 

If we place the sampled signal ( )x n
max

 in the lower bits of computer word (with sign 
extension), the corresponding x  will be 1/1 . Suppose we wish to scale the output 
signal to . We have 

6
max 1y =

8 
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1

0

10.98 50
1 0.98

m

m
h

∞

=

= =
−∑ =  

Therefore, the maximum scale factor is c  in this case. Rounding 
downward to a power of 2, we get a scale factor of 0.25. Such scaling is equivalent to 
shifting 

16 / 50 0.32= =

( )x n  by 2 bits to the right, thus losing 2 out of the 12 available bits. The lesson 
from this example is that scaling using c  as in (8.21) potentially involves loss of 
accuracy of the input signal. 

8.3.2 FREQUENCY-DOMAIN SCALING 

The scale factor given in (8.21) is often over-conservative in its use of the dynamic 
range of the computer word. By this we mean that the values assumed by the output 
signal are usually small in magnitude compared with the full scale. Less conservative 
scaling is provided by frequency-domain bounds, as follows. 

1-norm bound:  
We have, by the inverse Fourier transform formula, 

 ( ) ( ) ( )1
2

i ny n H j X j e d
π

ω

π

ω ω
π −

= ∫ ω  (8.22) 

Therefore, 

 ( ) ( ) ( )1
2

y n H j X j d
π

π

ω ω
π −

≤ ⋅∫ ω  (8.23) 

Define 

 ( ) ( )1

1max ,
2

X X j H H j d
π

ω
π

ω
π∞

−

= = ∫ ω ω  (8.24) 

The quantity X
∞

 is called the infinity norm of ( )X jω , and the quantity 
1
 is 

called 1-norm of . If 
H

(H jω) X
∞

 is finite, we can guarantee that  by using 
the scale factor 

( ) maxy n y≤

 max

1

yc
H X

∞

=  (8.25) 

Infinity-norm bound: 
By reversing the roles of  and H X  in (8.25), we get the scale factor 

 max

1

yc
H X

∞

=  (8.26) 

This scale factor is applicable in case 
1

X , the 1-norm of the input signal, is finite. It is 
particularly useful when the input signal is narrow band. For example, if ( )x n  is known 
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to be sinusoidal, the scale factor (8.26) guarantees that the amplitude of the sinusoid at 
the output of the filter not exceed . maxy

2
H =

2 2
d= =

c =

may

H

2-norm bound: 
Unlike the preceding bounds, the bound we introduce now is probabilistic. Define 

 ( ) 21
2

H j
π

π

ω
π −
∫  (8.27) dω

Note that (8.27) is identical to the square root of the noise gain of the filter. Let us 
assume that the input ( )x n  is a wide-sense stationary signal having power spectral 
density . Then, we can bound the variance of the output signal as follows: (xK jω)

 ( ) ( ) ( ) 2 2

2

1 1
y y x xK j K j H j K H

π π

π π

γ ω ω ω ω
π π ∞

− −

≤∫ ∫  (8.28) 

Therefore, if we know the maximum possible value of the power spectral density of the 
input signal, and we require that the variance of the output signal not exceed ,maxyγ , we 
get the scale factor 

 ,max
2

2

y

xH K

γ

∞

 (8.29) 

Bounding the variance of  does not guarantee boundedness of ( )y n ( )y n
,mayγ

, and this is 
why we refer to (8.29) as probabilistic scaling. If, for example, we take , 
the probability of 

2
x max0.1y≈

( )y n  exceeding  is expected to be lowx
1. 

 
The four norms we have introduced are known to satisfy the relationship 

 
1 2

H H H h
∞

≤ ≤ ≤
1
 (8.30) 

This, however, does not imply that 
1
 always provides the best (largest) scale factor, 

since the different scaling rules also depend on maxx , ,maxy ,maxyγ , X
∞

, 
1

X  and 
xK

∞
. Therefore, judicious choice of scaling method requires knowledge about the 

nature of the input signal and its bounds. 

8.3.3 MATLAB IMPLEMENTATION OF FILTER NORMS 

Exact computation of norms we have presented is not possible in general for 
rational filters (with the exception of 

2
). However, numerical approximations can be 

used instead. High accuracy is not required, since the scale factor resulting from those 
norms is usually

H

2 rounded to an integer power of 2. The procedure filnorm in the 
Appendix implements the computation of the four filter norms. The time-domain norm 

1
h is computed by calling the function filter with a unit-sample input, and adding 

                                                 
1 For example, if ( )y n  has Gaussian probability density, this probability is about 0.0016. 
2 For some realizations scaling factors can be absorbed into the filter coefficients. In this case the 

scaling factors need not to be limited to an integer power of 2. 

10 
DIGITAL FILTERS – LESSONS (2004) 



DIGITAL FILTER IMPLEMENTATION 
 

terms ( )h n  until the relative error drops below a prescribed threshold. The norm 
2

H  
is computed by calling nsgain and taking the square root of the result. The norm H

∞
 

is approximated by the maximum of the magnitude response, computed on a dense grid. 
Finally, the norm 

1
 is computed by evaluating the magnitude response on a dense 

grid and approximating the integral by Simpson’s rule. 
H

x

x

8.3.4 SCALING OF INNER SIGNALS 

Our discussion so far has concentrated on input scaling of a transfer function to 
avoid overflow of the output. In realizing a filter, inner (or intermediate) signals are 
always present, so we need to concern ourselves with potential overflow problems in 
such signals as well. There are four types of inner signal: 

1. A signal resulting from delaying another signal. Such a signal can never 
overflow if the signal at the input of the delay does not. 

2. A signal resulting from multiplying a signal by a constant. Assuming that both 
factors in the product are scaled below 1, the product is also less than 1 in 
magnitude, so it cannot overflow. 

3. A signal resulting from adding two signals to form a partial sum, which is later 
used as an operand in another sum. We assume that such a signal is not used for 
any other purpose in the filter or outside it. Addition of two signals can 
potentially lead to overflow. However, two’s-complement arithmetic has the 
following important property: If a sum of  numbers ( ) does not overflow, 
overflows in partial sums cancel out and do not affect the signal result. For 
example, suppose that 

n 2n >

1 2 3x x x+ +  does not overflow, and the computation is 
performed in the in the order ( ) 31 2x x+ x+ . Then, even if 1 2x x+  overflows and 
the overflow is ignored, the final result will still be correct. The reason is that 
two’s-complement is a special case of modular arithmetic  (i.e., a number  is 
represented by ( , assuming that the binary point is immediately to the 
right of the sign bit), hence standard rules of modular addition apply to it. The 
conclusion is that, if the filter is implemented in two’s-complement arithmetic, 
overflows in partial sums can be ignored. 

)2modx

4. A signal resulting from adding two signals to form a final sum, which is needed 
elsewhere in the filter or outside it. Such signal must be scaled similarly to the 
output signal, since its overflow is potentially harmful. This is done by 
computing the transfer function from the input to the signal in question and 
using one of the scaling methods described earlier. It is also recommended, in 
most applications, to detect overflows of such signals and replace the 
overflowed signal by the corresponding saturation value. For example, if it is 
detected that 1≥ , x  should be replaced by 1 2 ; if it is detected that 

, 
( 1B− −− )

1x < − x  should be replaced by . Most DSP microprocessors have a 
saturation mode, in which this operation is performed automatically after the 
addition. 

1−

Example 2 
In the direct realization shown in Figure 4 (chapter 7) there are 15 inner signals, in 
addition to the output signal. However, only the signals u n  and  are of the 
fourth type. The former because it is used more than once inside the filter, and the latter 
because it is used outside it. The transfer function from 

( )

)

( )y n

(x n  to u n  is ( )
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 ( )
( ) ( )

1U z
X z A z

=  

so one of the scaling methods explained previously should be used for it. 
In the transposed direct realization shown in Figure 7 (chapter 7), only the output 

signal  is of the fourth type. Any overflow generated at one of the adders along the 
central lane will propagate through the delays and will eventually reach . 
However, if the input is properly scaled to avoid overflow in , the entire 
realization will be insensitive to intermediate overflows. In this respect, the transposed 
direct realization offers an advantage over the direct realization. 

( )y n
( )y n

( )y n

8.3.5 SCALING IN PARALLEL AND CASCADE REALIZATION 

We now discuss in detail scaling procedures for parallel and cascade realizations 
for IIR filters. As we saw in the last example, the transposed direct realization has an 
advantage over the direct realization, in that there is no need to scale inner signals. We 
therefore consider only parallel and cascade realizations in which the second-order 
sections are in a transposed direct realization3. 

Figure 4 illustrates a parallel connection of three second-order sections (delays are 
representable by factors , and summing junctions by open circles). The scaling 
procedure is as follows: 

1z−

1. The input coefficients mf  at each section are scaled to prevent overflow of 
, the output signal of the section. As we have explained, this scaling 

depends on the assumptions made on the input signal, and on the norm used. 
The same scale factor should be applied to both coefficients of a specified 
section, but different factors are permitted at different sections. The 

( )kv n

mf  shown in 
Figure 4 are assumed to be scaled already. 

2. The coefficients λ  are computed to make total gains of all sections (including 
the branch of constant gain ) equal to the corresponding gains in the unscaled 
transfer function, up to a common proportionality factor. For example, if 

k

0c
1f , 2f  

where scaled down by 2 compared with 3f , 4f , then  must be larger than  
by 2. 

1λ 2λ

3. The dynamic range of  is checked using the scaled transfer function. If it is 
found that  can overflow, all  must be decreased by a common factor, to 
prevent (or decrease the probability of) this overflow. If it is found that the 
dynamic range of  is small relative to full scale, all  may be increased 
by a common factor. 

( )y n

)

( )y n kλ

(y n kλ

4. In the preceding steps, all factors are usually taken as integer powers of 2. This 
way, factors greater than 1 can be implemented by left shifts, and factors smaller 
than 1 can be implemented by right shifts. 

 

Example 3 
Consider parallel realization of IIR filter with coefficients quantized to 16 bits with 

                                                 
3 For some hardware implementations it make sense to use other structures. E.g. standard DSP 

architectures are typically more suitable for noncanonical realization. This will be demonstrated in the last 
exercise “Hardware Implementation of Digital Filters”. 
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( )

20 20 1
17

14 1 14 2

17 17 1 16

14 1 14 2 15 1

8909 2 22869 224984 2
1 30365 2 15710 2

30199 2 28813 2 19504 2
1 28072 2 13038 2 1 25279 2

zH z
z z

z
z z

− − −
−

− − − −

− − − −

− − − − − −

× − ×= − × + +
− × + ×

− × + × ×+ +
− × + × − × z

 

Suppose we know that the input signal satisfies 0.1xK =
∞

. We decide to use 2-norm 
scaling such that the variance of the signal at the output of each section, as well as at the 
output of the complete filter, will not exceed 0.1. This implies that the 2-norm fo each 
section must be no larger than 1 after scaling. 

The 2-norms of the tree unscaled sections are computed by the program filnorm and 
found to be 0.1528, 0.3805, and 0.4677. Therefore, the first section can be scaled by 4, 
the second by 2, and the third by 2. This is done by doubling the numerator coefficients 
of the second and the third sections, and quadrupling the numerator coefficients of the 
first. 

The 2-norm of complete filter is 0.3248, so the transfer function can be scaled by 2 
to increase the dynamic range. We therefore complete the scaling procedure taking 

  (8.31) 0 1 2 32, 0.5, 1λ λ λ λ= = = =
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Figure 4 Scaling for a parallel realization (second-order sections in a transposed direct 
realization). 
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We now turn our attention to scaling of cascade realizations. Unlike a parallel 
realization, here we must choose the order of the sections in the cascade, since scaling 
depends on this order. There is no simple rule for choosing the best order in cascade 
realization: It depends on the nature of the input signal, the norm used for scaling, and 
the specified filter. Ordering rules have been proposed in the literature but are not 
discussed here. We use the order provided by the program pairz. We reiterate that this 
program orders the complex poles in decreasing order of closeness to the unit circle 
(i.e., the poles closest to the unit circle appear first, and so on). 

Figure 5 illustrates a cascade connection of three second-order sections. Let  
denote the second-order sections from left to right (not including the scale factors). The 
scaling procedure is as follows. For each k , starting from 1 and continuing until all 
sections are exhausted, choose  to avoid overflow in the transfer function 

( )kH z

kλ

  ( )
1

k

i i
i

H zλ
=

∏

At the kth stage, the factors { },1 1i i kλ ≤ ≤ −

k∏
kλ

 have already been determined, so only  
is free to choose. After this procedure has been completed, the output  will be free 
of overflow, but the total gain will be  instead desired value b . The final 
stage is therefore to decrease one of the  such that 

k
 will be equal to b  

times an integer power of 2. This way, the input-output transfer function will be the 
desired  scaled by a power of 2, as in the case of parallel realization. 

kλ

( )0

( )y n
(0kλ )

kλ∏
( )H z

Example 4 
We look again at the IIR filter discussed in Example 3. The cascade decomposition of 
the filter, with coefficients quantized to 16 bits, is 

 
( )

14 1 2
20

14 1 14 2

14 1 2 1

14 1 14 2 15 1

1 28587 229414 2
1 30365 2 15710 2

1 30493 2 1
1 28072 2 13038 2 1 25279 2

z zH z
z z

z z z
z z

− − −
−

− − − −

− − − −

− − − − − −

− × += × ⋅
− × + ×

− × + +⋅ ⋅
− × + × − × z

 

Assume, as in Example 3, that the input signal satisfies 0.1xK =
∞

. We decide to use 
2-norm scaling such that the variance of the signal at the output of each section will not 
exceed 0.1. 

The program filnorm gives the following 2-norms: 

 1 1 2 1 2 32 2 2
1.8958, 1.8730, 11.5802H H H H H H= = =  

From the first value we get that , from the second that , and from the 
third that . Therefore,  and . Finally, we must decrease one of 
the  to account for b . We decide to decrease  from 1 to 

. This gives an overall gain of , which is equal to 
, quantized to 16 bits. In summary, 

1 0.5λ =
2 1λ =

( )0

1 2 0.5λ λ =

2λ
192−×

4
1 2 3 2λ λ λ −=

(15 0.8976−× ≈

3
3 2λ −=

kλ

)0
)29414 2

(2b
29414

  15 3
1 2 30.5, 29414 2 , 2λ λ λ− −= = × =
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Figure 5 Scaling for a cascade realization (second-order sections in a transposed direct 
realization). 

8.4 ZERO-INPUT LIMIT CYCLES IN DIGITAL FILTERS 

When a stable linear filter receives no input, and its internal state has nonzero initial 
conditions, its output decays to zero asymptotically. This follows because the response 
of each pole of the filter to initial conditions is a geometric series with parameter less 
than 1 in magnitude. However, the analysis that leads to this conclusion is based on the 
assumption that signals in the filter are represented to infinite precision, so they obey 
mathematical formulas exactly. Quantization resulting from finite word length is a 
nonlinear operation, so stability properties of linear systems do not necessary hold for a 
filter subject to quantization. Indeed, digital filters can exhibit sustained oscillations 
when implemented with finite word length. Oscillations resulting from nonlinearities 
are called limit cycles. 

Limit cycle phenomena are different from the noiselike behavior caused by 
quantization. Quantization effects are noiselike when the signal level is large and 
relatively fast varying, rendering the quantization error at any given time nearly 
independent of the errors at the past times. When the signal level is low, errors caused 
by quantization become correlated. When the input signal is zero, randomness 
disappears, and the error behavior becomes completely deterministic. Oscilations in the 
absence of input are called zero-input limit cycles. Such oscillations are periodic, but 
not necessarily sinusoidal. They are likely to appear whenever there is feedback in the 
filter. Digital IIR filters always have inner feedback paths, so they are susceptible to 
limit cycle oscillations. On the other hand, FIR filters are feedback free, so they are 
immune to limit cycles. This is yet another advantage of FIR filters over IIR filters. 
Limit cycles may be troublesome in applications such as speech and music, because 
resulting signal may be audible. 

Mathematical analysis of limit cycles is difficult except for first-order filters. We 
shall therefore omit most mathematical details, and restrict our discussion to some 
examples. 

Example 5 
Consider the first-order filter 

  ( ) ( ) ( )0.625 1y n y n x n= − − +

Suppose that we implement the filter with 4-bit rounding arithmetic, so the least 
significant bit is 1/8. Let the input signal ( )x n  be zero and . Then ( )0 3/y = 8
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( )1 15 / 6y = −

( )3 1/ 8y = −

(y n

( )0 3/ 8y = −

4 4 2
8
4

, and this will be rounded to . Next , and this 
will be rounded to . Next , and this will be rounded to 

. Next , and this will be rounded to . From this 
point on we will have  for all even  and  for all odd . We 
get a constant amplitude oscillation whose frequency is  and whose amplitude is 
1/8. 

( )1 1/y = −
( )3 5 / 64= −

n y n

/ 8, 1/ 8, 0, 0−

( ) ( )1y n x n− +

1/ 8,1/ 8,1/ 8,

1/ 8, 1/ 8,− − −

( )2 5 / 3y =

( )4 1/ 8y =
1/ 8

( )2 1/y =
( )4 5 / 6y =

( ) 1/y n =

( )y n

( )4y

y n

( )y n

( ) 3y n =

π

y

/ 4,1

=

/ 4,

4,

8

3

=

−

( ) = −
oω π=

,…

…

1/ 8,…

n

( )

/

Example 6 
Next consider the same filter, but implemented with 4-bit truncation arithmetic. The 
sequence of values of the output signal will now be 

  / 8, 1= −

As we see, truncation of  makes it zero, thus stopping the oscillations. This time 
there is no limit cycle. 

Example 7 
Consider the filter 

  0.625

with 4-bit rounding arithmetic. This time the output sequence is 

  3 / 8,1

As we see, the output reaches a constant nonzero value. This phenomenon is called 
zero-frequency limit cycle. 

Example 8 
For the same filter as in Example 7, but with truncation arithmetic and the same initial 
condition,  will reach zero as in Example 6. )
Example 9 
Consider the filter from Example 7, but with truncation arithmetic and initial condition 

. Then  

  8, 1/−

We get zero-frequency limit cycle again, this time with a negative constant value. 
 

The lesson from this example is that the existence and nature of limit cycles in first-
order filters depend on the filter in question, the quantization level, the method of 
quantization, and the initial conditions. Limit cycles in second-order filters are much 
more difficult to analyze. As in the case of first-order filters, limit cycles are possible at 
both frequencies 0 and . However, second-order filters can also sustain limit cycles at 
other frequencies. The frequency and amplitude of the limit cycle (if it exists) depend 
on the coefficients, initial conditions, quantization method, and word length. However, 
in case of a second-order section they also depend on the realization. In particular, the 
coupled realization presented on Figure 2 is less susceptible to limit cycles than a direct 
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realization. The coupled realization is presented by the state-space equations. It is 
possible to show that the coupled realization can be made completely free of zero-input 
limit cycles if two precautions are taken in its implementation: 

1. Magnitude truncation, also called rounding toward zero, is used instead of 
rounding or truncation. The magnitude truncation of a number  is the number a

( )a sign a   . This method is seldom implemented in hardware, so it usually 
requires special programming. 

2. Magnitude truncation of each component of state s  is performed after 
both product (by coefficients  and )  are formed and added (subtracted) in 
double precission. 

( 1n + )
rα iα
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APPENDIX - MATLAB PROGRAMS 

function [dHmag,S] = sensiir(typ,b,a,K,theta); 
% Synopsis: [dHmag,S] = sensiir(typ,b,a,K,theta). 
% Computes the sensitivity bound for the magnitude response of 
% an IIR filter to coefficient quantization. 
% Input parameters: 
% typ: 'd' for direct realization 
%      'p' for parallel realization 
%      'c' for cascade realization 
% b, a: numerator and denominator polynomials 
% K: number of frequency points 
% theta: frequency interval (2-element vector). 
% Output parameters: 
% dHmag: the partial derivative matrix, M by K, where M is the 
%        number of coefficients in the realization 
% S: the sensitivity bound, 1 by K. 
 
Hangle = exp(-j*angle(frqresp(b,a,K,theta))); 
if (typ == 'd'), 
   [dH,sc] = dhdirect(b,a,K,theta); 
elseif (typ == 'p'), 
   [c,nsec,dsec] = tf2rpf(b,a); 
   [dH,sc] = dhparal(nsec,dsec,c,K,theta); 
elseif (typ == 'c'), 
   c = b(1); v = roots(a); u = roots(b); 
   [nsec,dsec] = pairpz(v,u); 
   [dH,sc] = dhcascad(nsec,dsec,c,K,theta); 
end 
[M,junk] = size(dH); 
dHmag = real(dH.*(ones(M,1)*Hangle)); 
S = sum(abs((sc*ones(1,K)).*dHmag)); 
 
 
 
function [dH,sc] = dhdirect(b,a,K,theta); 
% Synopsis: [dH,sc] = dhdirect(b,a,K,theta). 
% Computes the derivatives of the magnitude response of an 
% IIR filter in direct realization with respect to the 
% parameters, and a scaling vector for the parameters. 
% Input parameters: 
% b, a: the numerator and denominator polynomials 
% K: number of frequency points 
% theta: frequency interval (2-element vector). 
% Output parameters: 
% dH: matrix of partial derivatives of |H(theta)| 
% sc: a scaling vector. 
 
% Part of software package for the book: 
% A Course in Digital Signal Processing 
% by Boaz Porat, John Wiley & Sons, 1997 
 
dHn = []; dHd = []; scn = []; scd = []; 
H = frqresp(b,a,K,theta); 
for k = 0:length(b)-1, 
   dHn = [dHn; frqresp([zeros(1,k),1],a,K,theta)]; 
end 
for k = 1:length(a)-1, 
   dHd = [dHd; -frqresp([zeros(1,k),1],a,K,theta).*H]; end 
   scn = scale2(b)*ones(length(b),1); 
   scd = scale2(a)*ones(length(a)-1,1); 
   dH = [dHn; dHd]; sc = [scn; scd]; 
end 
 
 
 
function [dH,sc] = dhparal(nsec,dsec,c,K,theta); 
% Synopsis: [dH,sc] = dhparal(nsec,dsec,c,K,theta). 
% Computes the derivatives of the magnitude response of an 
% IIR filter in parallel realization with respect to the 
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% parameters, and a scaling vector for the parameters. 
% Input parameters: 
% nsec, dsec, c: parameters of the parallel realization 
% K: number of frequency points 
% theta: frequency interval (2-element vector). 
% Output parameters: 
% dH: matrix of partial derivatives of |H(theta)| 
% sc: a scaling vector. 
 
dHn = []; dHd = []; scn = []; scd = []; 
[M,junk] = size(nsec); 
for k = 1:M, 
   if (dsec(k,3) == 0), 
      [dHt,sct] = dhdirect(nsec(k,1),dsec(k,1:2),K,theta); 
      dHn = [dHn; dHt(1,:)];  dHd = [dHd; dHt(2,:)];  
      scn = [scn; sct(1)]; scd = [scd; sct(2)]; 
   else, 
      [dHt,sct] = dhdirect(nsec(k,:),dsec(k,:),K,theta); 
      dHn = [dHn; dHt(1:2,:)]; dHd = [dHd; dHt(3:4,:)];  
      scn = [scn; sct(1)*ones(2,1)]; 
      scd = [scd; sct(2)*ones(2,1)]; 
   end 
end 
dH = [dHn; dHd; ones(1,K)]; sc = [scn; scd; scale2(c)]; 
 
 
 
function [dH,sc] = dhcascad(nsec,dsec,c,K,theta); 
% Synopsis: [dH,sc] = cascad(nsec,dsec,c,K,theta). 
% Computes the derivatives of the magnitude response of an 
% IIR filter in cascade realization with respect to the 
% parameters, and a scaling vector for the parameters. 
% Input parameters: 
% nsec, dsec, c: parameters of the cascade realization 
% K: number of frequency points 
% theta: frequency interval (2-element vector). 
% Output parameters: 
% dH: matrix of partial derivatives of |H(theta)| 
% sc: a scaling vector. 
 
dHn = []; dHd = []; scn = []; scd = []; 
cntd = 0; cntn = 0; 
[M,junk] = size(nsec); H = ones(1,K); 
for k = 1:M, 
   if (nsec(k,3) ~= 0 & abs(nsec(k,2)) ~= 2), 
      Ht = frqresp(nsec(k,:),dsec(k,:),K,theta); 
      [dHt,sct] = dhdirect(nsec(k,:),dsec(k,:),K,theta); 
      H = Ht.*H; 
      dHn = [dHn; dHt(2,:)./Ht]; cntn = cntn+1; 
      dHd = [dHd; dHt(4:5,:)./(ones(2,1)*Ht)];  
      cntd = cntd+2; 
      scn = [scn; sct(2,1)]; 
      scd = [scd; sct(4:5,1)]; 
   end 
end 
dHn = c*(ones(cntn,1)*H).*dHn; dHd = c*(ones(cntd,1)*H).*dHd; 
dH = [dHn; dHd; H]; sc = [scn; scd; scale2(c)]; 
 
 
 
function s = scale2(a); 
% Synopsis: s = scale2(a). 
% Finds a power-of-2 full scale for the vector a. 
 
s =  exp(log(2)*ceil(log(max(abs(a)))./log(2))); 
 
 
 
function [dHmag,S] = sensfir(h,K,theta); 
% Synopsis: [dHmag,S] = sensfir(h,K,theta). 
% Computes the sensitivity bound for the magnitude response of 
% a linear phase FIR filter to coefficient quantization. 
% Input parameters: 
% h: vector of coefficients 
% K: number of frequency points 
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% theta: frequency interval (2-element vector). 
% Output parameters: 
% dHmag: the partial derivative matrix, M by K, where M is the 
%        number of coefficients in the realization 
% S: the sensitivity bound, 1 by K. 
 
Hangle = exp(-j*angle(frqresp(h,1,K,theta))); 
N = length(h) - 1; dH = []; 
if (sign(h(1))==sign(h(N+1))), pm = 1; else, pm = -1; end 
for k = 0:floor((N-1)/2), 
   dH = [dH; frqresp( ... 
   [zeros(1,k),1,zeros(1,N-1-2*k),pm,zeros(1,k)],1,K,theta)]; 
end 
if (rem(N,2) == 0), 
   dH = [dH; frqresp([zeros(1,N/2),1,zeros(1,N/2)],1,K,theta)]; 
end 
sc = scale2(h); 
[M,junk] = size(dH); 
dHmag = real(dH.*(ones(M,1)*Hangle)); 
S = sc*sum(abs(dHmag)); 
 
 
 
function H = qfrqresp(typ,B,b,a,K,theta); 
% Synopsis: H = qfrqresp(typ,B,b,a,K,theta). 
% Computes the frequency response of a filter subject 
% to coefficient quantization. 
% Input parameters: 
% typ: 'd' for direct, 'p' for parallel, 'c' for cascade 
% b, a: numerator and denominator polynomials 
% K: number of frequency points 
% theta: frequency interval (2-element vector). 
% Output parameters: 
% H: the frequency response. 
 
if (typ == 'd'), 
   scn = (2^(B-1))/scale2(b); b = (1/scn)*round(scn*b); 
   scd = (2^(B-1))/scale2(a); a = (1/scd)*round(scd*a); 
   H = frqresp(b,a,K,theta); 
elseif (typ == 'p'), 
   [c,nsec,dsec] = tf2rpf(b,a); 
   sc = (2^(B-1))/scale2(c); c = (1/sc)*round(sc*c); 
   [M,junk] = size(nsec); H = c; 
   for k = 1:M, 
      nt = nsec(k,:); dt = dsec(k,:); 
      if (dt(3) == 0), dt = dt(1:2); nt = nt(1); end 
      scn = (2^(B-1))/scale2(nt); nt = (1/scn)*round(scn*nt); 
      scd = (2^(B-1))/scale2(dt); dt = (1/scd)*round(scd*dt); 
      H = H + frqresp(nt,dt,K,theta); 
   end 
elseif (typ == 'c'), 
   c = b(1); v = roots(a); u = roots(b); 
   [nsec,dsec] = pairpz(v,u); 
   sc = (2^(B-1))/scale2(c); c = (1/sc)*round(sc*c); 
   [M,junk] = size(nsec); H = c; 
   for k = 1:M, 
      nt = nsec(k,:); dt = dsec(k,:); 
      if (dt(3) == 0), dt = dt(1:2); nt = nt(1:2); end 
      scn = (2^(B-1))/scale2(nt); nt = (1/scn)*round(scn*nt); 
      scd = (2^(B-1))/scale2(dt); dt = (1/scd)*round(scd*dt); 
      H = H.*frqresp(nt,dt,K,theta); 
   end 
end 
 
 
 
function [h1,H1,H2,Hinf] = filnorm(b,a); 
% Synopsis: [h1,H1,H2,Hinf] = filnorm(b,a). 
% Computes the four norms of a rational filter. 
% Input parameters: 
% b, a: the numerator and denominator polynomials. 
% Output parameters: 
% h1: sum of absolute values of the impulse response 
% H1: integral of absolute value of frequency response 
% H2: integral of magnitude-square of frequency response 
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% Hinf: maximum magnitude response. 
 
[h,Z] = filter(b,a,[1,zeros(1,99)]); 
h1 = sum(abs(h)); n = 100;  h1p = 0; 
while((h1-h1p)/h1 > 0.00001), 
   [h,Z] = filter(b,a,zeros(1,n),Z); 
   h1p = h1; h1 = h1 + sum(abs(h)); n = 2*n; 
end 
 
H2 = sqrt(nsgain(b,a)); 
 
N = 2 .^ ceil(log(max(length(a),length(b))-1)/log(2)); 
N = max(16*N,512)+1; temp = abs(frqresp(b,a,N)); 
Hinf = max(temp); 
temp = [1,kron(ones(1,(N-1)/2-1),[4,2]),4,1].*temp; 
H1 = sum(temp)/(3*(N-1)); 
 

LITERATURE 

[1] Porat, B: A Course in Digital Signal Processing. John Wiley & Sons, Inc. New York 
1997, ISBN 0-471-14961-7. 
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